Advertisement

The Nature of Intramembraneous Particles

  • A. J. Verkleij
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)

Abstract

Freeze-fracturing electron microscopy has become a very popular method in membrane biology over the last decade and it is also of great value in the study of the structural details of aqueous lipid dispersions. This can simply be attributed to a faithful physical fixation method and the replica method, both of which exclude the artifacts frequently introduced in this section (positive staining) and negative staining electron microscopy (Zingsheim, 1972). At present freeze fracturing is technically straightforward and the reproducibility is high. Moreover, the fracturing process intrinsic to the method is now reasonably well understood (Verkleij and Ververgaert, 1978).

Keywords

Erythrocyte Membrane Fracture Face Freezing Method Freeze Fracture INTRAMEMBRANEOUS Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann, L. and Schmidt, W.W., 1971, Weniger Artefacten in der Gefrierätzung durch erhöhte Einfriergeschwindigkeit, Proc. Natl. Acad. Sci. USA, 68: 2149.PubMedCrossRefGoogle Scholar
  2. Boni, L.T., Stewart, T.P., Aldorfer, J.L. and Hui, S.W., 1981, Lipid polyethylene glycol interactions. -I. Induction of fusion between liposomes, J. Membr. Biol., 62: 65.PubMedCrossRefGoogle Scholar
  3. Branton, D., 1966, Fracture faces of frozen membranes, Proc. Natl. Acad. Sci. USA, 55: 1048.Google Scholar
  4. Branton, D., 1971, Freeze etch studies of membrane structure, Phil. Trans. Roy. Soc. Lond. B, 261: 133.CrossRefGoogle Scholar
  5. Branton, D., Bullivant, S., Gilula, N.B., Karnovsky, M.J., Moor, H., Mühlethaler, K., North, D.H., Parker, L., Satir, B., Satir, P., Speth, V., Staehelin, J.A., Steere, R.L. and Weinstein, R.S., 1975, Freeze-etching nomenclature, Science, 190: 54.PubMedCrossRefGoogle Scholar
  6. Bullivant, S., 1974, Membranes, freeze-etching techniques applied to biological membranes, Phil. Trans. Roy. Soc. Lond. B, 268:Google Scholar
  7. Cullis, P.R. and Grathwohl, A., 1977, Hydrocarbon phase transitions and lipid-protein interactions in the erythrocyte membrane. A 31P NMR and fluorescence study, Biochim. Biophys. Acta, 471: 213.PubMedCrossRefGoogle Scholar
  8. Deemer, D.W., Leonard, R., Tardieu, A. and Branton, D., 1970, Lamellar and hexagonal lipid phases visualized by freeze etching, Biochim. Biophys. Acta, 219: 47.CrossRefGoogle Scholar
  9. Dupont, Y., Gabriel, A., Chabre, M., Gulik-Krzywicki, T. and Schechter, E., 1972, Use of new detector for X-ray diffraction and kinetics of the ordering of the lipids in E. coli membranes and model systems, Nature, 238: 331.Google Scholar
  10. Gross, H., Bass, E. and Moore, H., 1978, Freeze-fracturing in ultrahigh vacuum at -196°C, J. Cell Biol., 76: 712.PubMedCrossRefGoogle Scholar
  11. Gulik-Krzywicki, T. and Costello, M.J., 1978, The use of low temperature X-ray diffraction to evaluate freezing methods used in freeze-fracture electron microscopy, J. Microsc., 112: 103.PubMedCrossRefGoogle Scholar
  12. Hauser, J.E., Reese, T.S., Dennis, M.J., Jan, Y., Jan, L. and Evans, L., 1979, Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol., 81: 275.CrossRefGoogle Scholar
  13. Kachar, B. and Reese, T.S., 1982, Evidence for the lipidic nature of tight junction strands, Nature, 296: 464.PubMedCrossRefGoogle Scholar
  14. Moor, H., 1971, Recent progress in the freeze etching technique, Phil. Trans. Roy. Soc. Lond. B, 261: 121.CrossRefGoogle Scholar
  15. Mühlethaler, K., 1971, Studies on freeze etching of cell membranes, Int. Rev. Cytol., 31: 1.PubMedCrossRefGoogle Scholar
  16. Müller, M., Meister, N. and Moor, H., 1980, Freezing in a propane-jet and its application in freeze fracturing, Mikroskopie (Wien) 36: 129.Google Scholar
  17. Papahadjopoulos, D., Hui, S., Vail, W.J. and Poste, G., 1976, Studies on membrane fusion. -II. Induction in pure phospholipid membranes by calcium ions and other divalent metals, Biochim. Biophys. Acta, 448: 245.CrossRefGoogle Scholar
  18. Pinto da Silva, P. and Branton, D., 1970, Membrane splitting in freeze-etching: covalently bound ferritin as a membrane marker, J. Cell Biol., 45: 598.PubMedCrossRefGoogle Scholar
  19. Pinto da Silva, P. and Nicolson, G.L., 1974, Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles in human erythrocyte membrane, Biochim. Biophys. Acta, 363: 311CrossRefGoogle Scholar
  20. Pinto da Silva, P., Moss, P.S. and Fudenberg, H.H., 1974, Anionic sites on the membrane intercalated particles of human erythrocyte ghost membranes, Exp. Cell Res., 81: 127.CrossRefGoogle Scholar
  21. Sleytr, U.B. and Robards, A.W., 1977, Understanding the artefact problem in freeze fracture replication, J. Microsc., 110: 1.PubMedCrossRefGoogle Scholar
  22. Steahelin, L. and Hull, B.E., 1978, Junctions between living cells, Sci. Am., 238: 140.CrossRefGoogle Scholar
  23. Van Venetiü, R., Hage, W.J., Bleumink, J.G. and Verkleij, A.J., 1981, Propane jet-freezing. A valid rapid freezing method for the preservation of temperature dependent lipid phases, J. Microsc., 123: 287.CrossRefGoogle Scholar
  24. Verkleij, A.J. and Ververgaert, P.H.J.Th., 1975, The architecture of biological and artificial membranes as visualized by freeze fracturing, Ann. Rev. Phys. Chem., 26: 101.CrossRefGoogle Scholar
  25. Verkleij, A.J. and Ververgaert, P.H.J.Th., 1978, Freeze fracture of biological membranes, Biochim. Biophys. Acta, 515: 303.PubMedGoogle Scholar
  26. Verkleij, A.J., Mombers, C., Leunissen-Bijvelt, J. and Ververgaert, P.H.J.Th., 1979, Lipidic intramembraneous particles, Nature, 279: 162.PubMedCrossRefGoogle Scholar
  27. Ververgaert, P.H.J.Th., Verkleij, A.J., Verhoeven, J.J. and Elbers, P.F., 1973, Spray freezing of liposomes, Biochim. Biophys. Acta, 311: 651.PubMedCrossRefGoogle Scholar
  28. Zingsheim, H.P., 1972, Membrane structure and electron microscopy. The significance of physical problems and technics (freeze-etching), Biochim. Biophys. Acta, 265: 339.Google Scholar
  29. Zingsheim, H.P. and Plattner, H., 1976, Electron microscopic methods in membrane biology, in: “Methods in Membrane Biology”, Vol. 7, ( Korn, E.D., ed.), Plenum Publ. Co., New York, p. 1–146.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • A. J. Verkleij
    • 1
  1. 1.Institute of Molecular BiologyState University of UtrechtUtrechtThe Netherlands

Personalised recommendations