Photomodification of Biomembranes

  • Angelo A. Lamola
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)


This paper concerns two aspects of light-induced modifications of biomembranes: the degradative action of light on biomembrane function and structure, and the use of photochemical reactions to probe membrane structure.


Triplet State Singlet Oxygen Erythrocyte Membrane Photodynamic Action Primary Photochemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, A. C., Magnus, I. A., and Young, M. R. (1966) Role of lysosomes and cell membranes in photosensitization. Nature 209: 874–878.PubMedCrossRefGoogle Scholar
  2. Anderson, S. M., and Krinsky, N. I. (1973) Protective action of carotenoid pigments against photodynamic damage to liposomes. Photochem. Photobiol. 18: 403–408.PubMedCrossRefGoogle Scholar
  3. Anderson, S. M., Krinsky, N. I., Stone, M. J., and Clagett, D. C. (1974) Effect of singlet oxygen quenchers on oxidative damage to lipsomes initiated by photosensitization or by radiofrequency discharge. Photochem. Photobiol. 20: 65–69.PubMedCrossRefGoogle Scholar
  4. Bayley, H., and Knowles, J. R. (1977) Photoaffinity labelling. Meth. Enzym. 46: 120–172.Google Scholar
  5. Bayley, H., and Knowles, J. R. (1978a) Photogenerated reagents for membrane labeling. Phenylnitrene formed within the lipid bilayer. Biochem. 17: 2414–2419.CrossRefGoogle Scholar
  6. Bayley, H., and Knowles, J. R. (1978b) Photogenerated reagents for membrane labeling. Phenylcarbene and adamantylidene formed within the lipid bilayer. Biochem. 17: 2420–2423.CrossRefGoogle Scholar
  7. Bayley, H., and Knowles, J. R. (1980) Photogenerated, hydrophobic reagents for intrinsic membrane proteins. Ann. N.Y. Acad. Sci. 346: 45–54.PubMedCrossRefGoogle Scholar
  8. Bayley, H. (1983) Photogenerated reagents in biochemistry and molecular biology. In “Laboratory Techniques in Biochemistry and Molecular Biology,” Work and Burdon, (eds) North Holland Press.Google Scholar
  9. Bercovici, T., and Gitler, C. (1978) 5-Iodonaphthyl azide, a reagent to determine the penetration of proteins into the lipid bilayer of biological membranes. Biochem. 17: 1484–1489.Google Scholar
  10. Blum, H. F. (1964) Photodynamic Action and Diseases Caused by Light. Hafner Pub. Co., N.Y.Google Scholar
  11. Cook, J. S. (1975) Photopathology of the erythrocyte membrane, in Pathobiology of Cell Membranes. Trump, B. F., and Arstella, A. (eds) Academic press, NY.Google Scholar
  12. Das, M., and Fox, C. F. (1979) Chemical cross-linking in biology. Ann. Rev. Biophys. Bioeng. 8: 165–194.CrossRefGoogle Scholar
  13. de Goeij, A. F. P. M., Ververgaert, P. H. J. T., and van Steveninck, J. (1975) Photodynamic effects of protoporphyrin on the architecture of erythrocyte membranes in protoporphyria and in normal red cells. Clin. Chem. Acta. 62: 287–292.CrossRefGoogle Scholar
  14. de Goeij, A. F. P.M., and van Steveninck, J. (1976) Photodynamic effects of protoporphyrin on cholesterol and unsaturated fatty acids in erythrocyte membranes in protoporphyria and in normal red cells. Clin. Chem. Acta 68: 115–122.CrossRefGoogle Scholar
  15. Deziel, M. R., and Girotti, A. W. (1980) Bilirubin-photosensitized lysis of resealed erythrocyte membranes. Photochem. Photobiol. 31: 593–596.PubMedCrossRefGoogle Scholar
  16. Doleiden, F. H., Fahrenholtz, S. R., Lamola, A. A., and Trozzolo, A. M. (1974) Reactivity of cholesterol and some fatty acids towards singlet oxygen. Photochem. Photobiol. 20: 519–521.PubMedCrossRefGoogle Scholar
  17. Doughterty, T. J., Boyle, D. G., and Weishaupt, K. R. (1982) Photoradiation therapy of human tumors, in The Science of Photomedicine Regan, J. D., and Parrish, J. A. (eds) Plenum Press, NY, 625–638.Google Scholar
  18. Dubbelman, T. M. A. R., de Goeij, A. F. P. M., and van Steveninck, J. (1978) Protoporphyrin-sensitized photodynamic modification of proteins in isolated human red blood cell membranes. Photochem. Photobiol. 28: 197–204.PubMedCrossRefGoogle Scholar
  19. Dubbelman, T. M. A. R., de Goiej, A. F. P. M., and van Steveninck, J. (1978) Photodynamic effects of protoporphyrin on human erythrocytes. Nature of the cross-linking of membrane proteins. Biochim. Biophys. Acta 511: 144–141.Google Scholar
  20. Dubbelman, T. M. A. R., Haasmost, C., and van Steveninck, J. (1980) Temperature dependence of photodynamic red cell membrane damage. Biochim. Biophys. Acta 601: 220–227.PubMedCrossRefGoogle Scholar
  21. Dubbelman, T. M. A. R., de Goeij, A. F. P. M., and van Steveninck, J. (1980) Protoporphyrin-induced photodynamic effects on transport processes across the membrane of human erythrocytes. Biochem. Biophys. Acta 595: 133–139.PubMedCrossRefGoogle Scholar
  22. Eldred, G. E., Miller, G. V., Stark, W. S., and Feeney-Burns, L. (1982)Google Scholar
  23. Lipofuscin:resolution of discrepant fluorescence data. Science 216:757–758.Google Scholar
  24. Emanuel, N. M., and Lyaskovskaya, Y. N. (1967) The Inhibition of Fat Oxidation processes. Pergamon Press, Oxford.Google Scholar
  25. Fahrenholtz, S. R, Doleiden, F. H., Trozzolo, A. M., and Lamola, A. A. (1974) On the quenching of singlet oxygen by o-tocopherol. Photochem. Photobiol. 20: 505–509.PubMedCrossRefGoogle Scholar
  26. Foote, C. S. (1976) Photosensitized oxidation and singlet oxygen: Consequences in biological systems, in Free Radicals in Biology, Pryor, W. A. (ed) Academic Press, NY Vol. 2, 85–133.Google Scholar
  27. Foote, C. S. (1980) Photooxidation and toxicity, in Molecular Basis of Environmental Toxicity Bhatnager, R. S. (ed) Ann Arbor Science Pub., Ann Arbor.Google Scholar
  28. Girotti, A. W. (1976) Photodynamic action of protoporphyrin on human erythrocytes:cross-linking of membrane proteins. Biochem. Biophys. Res. Commun. 72: 1367–1374.PubMedCrossRefGoogle Scholar
  29. Girotti, A. W. (1978) Bilirubin-photosensitized cross-linking of polypeptides in the isolated membrane of the human erythrocyte. J. Biol. Chem. 253: 7186–7193.PubMedGoogle Scholar
  30. Girotti, A. (1979) Protoporphyrin-sensitized photodamage in isolated membranes of human erythrocytes. Biochem. 18: 4403–4411.CrossRefGoogle Scholar
  31. Girotti, A. W. (1980) Photosensitized cross-linking of erythrocyte membrane proteins. Evidence against participation of amino groups in the reaction. Biochem. Biophys. Acta 602: 45–56.PubMedCrossRefGoogle Scholar
  32. Gitler, C., and Bercovici, T. (1980) Use of lipophilic photoactivable reagents to identify the lipid-embedded domains of membrane proteins. Am. N.Y. Acad. Sci. 346: 199–211.CrossRefGoogle Scholar
  33. Gollnick, K. (1968) Type II photooxygenation reactions in solution. Advances Photochem 6: 1–122.Google Scholar
  34. Grossweiner, L. I., Patel, A. S., and Grossweiner, J. B. (1982) Type 1 and type 2 mechanisms in the photosensitized lysis of phosphatidylcholine liposomes by hematoporphyrin. Photochem. Photobiol. 36: 159–167.PubMedCrossRefGoogle Scholar
  35. Hackney, D. D. (1980) Photodynamic action of bilirubin on the inner mitochondrial membrane. Implications for the organization of the mitochondrial ATPase. Biochem. Biophys. Res. Commun. 94: 875–880.PubMedCrossRefGoogle Scholar
  36. Harber, L. C., Fleischer, A. S., Baer, R. L. (1964) Erythropoietic protoporphyria and photohemolysis. J. Am. Med. Assoc. 189: 191–194.CrossRefGoogle Scholar
  37. Harber, L. C., and Bickers, D. R. (1981) Photosensitivity Diseases. W. B. Saunders, Philadelphia. 189–223.Google Scholar
  38. Jagger, J. (1977) Phototechnology and biological experimentation, in The Science of Photobiology Smith, K. C. (ed) Plenum Press, NY.Google Scholar
  39. Jori, G. (1980) The molecular biology of photodynamic action. Springer Series in Optical Sciences 23: 58–66.Google Scholar
  40. Jori, G., and Spikes, J. D. (1981) Photosensitized oxidations in complex biological structures, in Oxygen and Oxy-Radicals in Chemistry and Biology, Rodgers, M. A. J., and Powers, E. L. (eds) Academic Press, NY, 441–457.Google Scholar
  41. Kahane, I., and Gitler, C. (1978) Red cell membrane glycophorin labeling from within the lipid bilayer. Science 201: 351–352.PubMedCrossRefGoogle Scholar
  42. Kirmse, W. (1971) Carbene Chemistry Academic Press, New York, 2nd ed. Kligman, A. M., and Keidbey, R. H. (1982) Phototoxicity to benoxaprofen. Eur. J. Rheum. Inflam. 5:124–137.Google Scholar
  43. Knauf, P. A., and Rothstein, A. (1980) Use of NAP-taurine as a photoaffinity probe for the human erythrocyte anion exchange system. Ann. N.Y. Acad. Sci. 346: 199–211.CrossRefGoogle Scholar
  44. Kochevar, I. E., and Lamola, A. A. (1979) Chlorpromazine and protriptyline phototoxicity: photosensitized, oxygen independent red cell hemolysis. Photochem. Photobiol. 29: 791–796.PubMedCrossRefGoogle Scholar
  45. Kochevar, I. E. (1981) Phototoxicity mechanisms: chlorpromazine photosensitized damage to DNA and cell membranes. J. Invest. Dermatol. 10: 59–64.CrossRefGoogle Scholar
  46. Kochevar, I., and Hom, J. (1983) Photoproducts of chlorpromazine which cause red blood cell lysis. Photochem. Photobiol. 37: 163–168.PubMedCrossRefGoogle Scholar
  47. Kochevar, I. E. (1980) Possible mechanisms of toxicity due to photochemical products of protriptyline. Toxicol. Applied pharmacol. 54: 258–264.CrossRefGoogle Scholar
  48. Krinsky, N. I. (1979) Carotenoid protection against oxidation. Pure Appl. Chem. 51: 649–660.Google Scholar
  49. Lamola, A. A. (1969) Electronic energy transferin solution:theory and applications, in Leermakers, PA and Weissberger, A. (eds) Energy Transfer and Organic Photochemistry, Interscience, NY, 17–132.Google Scholar
  50. Lamola, A. A., Yamane, T., and Trozzolo, A. M. (1973) Cholesterol hydro-peroxide formation in red cell membranes and photohemolysis in erythropioetic protoporphyria. Science 149: 1131–1133.CrossRefGoogle Scholar
  51. Lamola, A. A., Piomelli, S., Poh-Fitzpatrick, M. D., Yamane, T., and Harber, L. C. (1975) Erythropoietic protoporphyria and lead intoxication:the molecular basis for difference in cuaneous photosensitivity II. J. Clin. Invest. 56: 1528–1535.PubMedCrossRefGoogle Scholar
  52. Lamola, A. A. Electronic energy transfer in solution:Theory and applications, in Techniques of Organic Chemistry, Leermakers, P. A., and Weissberger, A. (eds), Wiley-Interscience, NY 14: 17–126.Google Scholar
  53. Lamola, A. A. (1977) Photodegradation of biomembranes in Research in Photobiology Castellani, A. (ed) Plenum, NY, 53–63.Google Scholar
  54. Lamola, A. A., and Turro, N. J. (1977) Spectroscopy, in The Science of Photobiology Smith, K. C. (ed) Plenum Press, NY, 27–62.Google Scholar
  55. Lamola, A. A., and Doleiden, F. H. (1980) Cross-linking of membrane proteins and protoporphyrin-sensitized photohemolysis. Photochem. Photobiol. 31: 597–601.PubMedCrossRefGoogle Scholar
  56. Lamola, A. A. (1981) Fluorescence methods in the diagnosis and management of diseases of tetrapyrrole metabolism. J. Invest. Derm. 77: 114–121.PubMedCrossRefGoogle Scholar
  57. Lwowski, W., ed. (1970) Nitrenes Wiley-Interscience, New York.Google Scholar
  58. Magnus, I. A. (1976) Dermatological Photobiology Blackwell, Oxford.Google Scholar
  59. Mead, J. F. (1976) Free radical mechanisms of lipid damage and consequences for cellular membranes in Free Radicals in Biology. Pryor, W. A. (ed) Academic Press, NY 1: 51–68.Google Scholar
  60. Michelson, A. M., and Durosay, P. (1977) Hemolysis of human erythrocytes by activated oxygen species. Photochem. Photobiol. 25: 55–63.PubMedCrossRefGoogle Scholar
  61. Muller-Runkel, R., Blais, J., and Grossweiner, L. I. (1981) Photodynamic damage to egg lecithin liposomes. Photochem. Photobiol. 33: 683–687CrossRefGoogle Scholar
  62. Peters, K., and Richards, E. M. (1977) Chemical cross-linking:Reagents and problems of membrane structures. Ann. Rev. Biochem. 46: 523–51.PubMedCrossRefGoogle Scholar
  63. Piomelli, S., Lamola, A. A., Poh-Fitzpatrick, M. D., Seaman, C., and Barber, L. L. (1975) erythropoietic protoporphyria and lead intoxication:the molecular basis for difference in cutaneous photosensitivity I. J. Clin. Invest. 56: 1519–1527.Google Scholar
  64. Pooler, J. P., and Valenzeno, D. P. (1979) Physicochemical determinants of the sensitizing effectiveness of nerve membranes by fluorescein derivatives. Photochem. Photobiol. 30: 491–498.PubMedCrossRefGoogle Scholar
  65. Pooler, J. P., and Valenzeno, D. P. (1981) Dye-sensitized photodynamic inactivation of cells. Med. Phys. 8: 614–628.PubMedCrossRefGoogle Scholar
  66. Radhakrishnan, R., Gupta, C. M., Erni, B., Robson, R. J., Curatolo, W., Majumdar, A., Ross, A. H., Takagaki, Y., and Khorana, H. G. (1980) Phospholipids containing photoactivable groups in studies of biological membranes. Ann. N.Y. Acad. Sci. 346: 165–197.PubMedCrossRefGoogle Scholar
  67. Richards, F. M., and Brunner, J. (1980) General labeling of membrane proteins. Ann. N.Y. Acad. Sci. 346: 144–163.CrossRefGoogle Scholar
  68. Rodgers, M. A., and Bates, A. L. (1982) A laser flash kinetic spectrophotometric examination of the dynamics of singlet oxygen in unilammellar vesicles. Photochem. Photobiol. 35: 473–477.CrossRefGoogle Scholar
  69. Roshchupkin, D. I., Pelenitsyn, A. B., Potapenko, A. Y., Talitsky, V. V., and Vladimirov, Y. A. (1975) Study of the effects of ultraviolet light on biomembranes. The effect of oxygen on uv-induced hemolysis and lipid photoperoxidation in rat erythrocytes and liposomes. Photochem. Photobiol. 21: 63–70.PubMedCrossRefGoogle Scholar
  70. Sandberg, S. (1981) Protoporphyrin-induced photodamage to mitochondria and lysosomes from rat liver. Clinica Chim. Acta 111: 55–60.Google Scholar
  71. Schothorst, A. A., van Steveninck, J., Went, L. N., and Surrmond, D. (1970) Protoporphyrin-induced photohemolysis in protoporphyria and in normal red blood cells. Clin. Chim. Acta 28: 41–49.PubMedCrossRefGoogle Scholar
  72. Schothorst, A. A., van Steveninck, J., Went, L. N., and Summond, D. (1972) Photodynamic damage of the erythrocyte membrane caused by protoporphyrin in protoporphyria and in normal red blood cells. Clin. Chim. Acta. 39: 161–170.PubMedCrossRefGoogle Scholar
  73. Schothorst, A. A., van Steveninck, Went, L. N., and Surrmond, D. (1971) Methods aspects of the photodynamic effects of protoporphyrin in protoporphyria and in normal red blood cells. Clin. Chim. Acta. 33: 207–213.PubMedCrossRefGoogle Scholar
  74. Sigrist-Nelson, K., Sigrist, H., Bercovici, T., and Gitler, C. (1977) Biochem. Biophys. Acta. 468: 163–76.CrossRefGoogle Scholar
  75. Sigrist, H., Allegrini, P. R., Kempf, C., Schnippering, C., and Zahler, P. (1982) 5-Isothiocyanato-1-naphthalene azide and pazidophenylisothiocyanate. Synthesis and application in heterobifunctional photoactive cross-linking of membrane proteins. Eur. J. Biochem. 125: 197–201.Google Scholar
  76. Spikes, J. D. (1982) Photodynamic reactions in photomedicine, in The Science of Photomedicine Regan, J. D., and Parrish, J. A. (eds) Plenum Press, NY, 113–144.Google Scholar
  77. Staros, J. V., and Richards, F. M. (1974) Photochemical labeling of the surface proteins of human erythrocytes. Biochem. 13: 2720–2726.CrossRefGoogle Scholar
  78. Suwa, K., Kimura, T., and Schaap, A. P. (1978) Reaction of singlet oxygen with cholesterol in liposomal membranes. Photochem. Photobiol. 28: 469–473.CrossRefGoogle Scholar
  79. Tometsko, A. M., and Richards, F. M. (eds) (1980) Applications of Photochemistry in Probing Biological Targets Ann. N.Y. Acad. Sci. 346.Google Scholar
  80. Turro, N. J., and Lamola, A. A. (1977) Photochemistry, in The Science of Photobiology Smith, R. C. (ed) Plenum Press, NY, 63–86.Google Scholar
  81. Turro, N. J. (1980) Structure and dynamics of important reactive intermediates involved in photobiological systems. Ann. N.Y. Acad. Sci. 346: 1–15.CrossRefGoogle Scholar
  82. Valenzeno, D. P., and Pooler, J. P. (1982) Cell membrane photomodification:relative effectiveness of halogenated fluoresceins for photohemolysis. Photochem. Photobiol. 35: 343–350.PubMedCrossRefGoogle Scholar
  83. Westheimer, F. H. (1980) Photoaffinity labeling-retrospect and prospect. Ann. N.Y. Acad. Sci. 346: 134–143.CrossRefGoogle Scholar
  84. Wilkinson, F., and Brummer, J. G. (1981) Rate constants for the decay and reactions of the lowest electronically singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 10: 809–999.CrossRefGoogle Scholar
  85. Winterle, J. J., and Mill, T. (1980) Free-radical dynamics in organized lipid bilayers. J. Am. Chem. Soc. 102: 6336–6338.CrossRefGoogle Scholar
  86. Wisnieski, B. J., and Bramhall, J. S. (1979) Labeling of the active subunit of cholera toxin from within the membrane. Biochem. Biophys. Res. Commun. 60: 308–312.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Angelo A. Lamola
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations