Advertisement

Utilizing Mast Cells and Basophils to Study Lipoxygenase Involvement in Membrane Activation

  • Albert M. Magro
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)

Abstract

An integral part of the immune response is the ability of membrane-bound immunoglobulin to initiate cellular events upon interaction with antigen. The ability of the membrane to translate messages of antigen presence is an important aspect of cellular activation and is dependent upon the enzymatic processes which are initiated. In exploring the enzymatic processes of cellular activation, one should select a system where the response of the cell can take place, on interaction of antigen with antibody, without the necessity of other fluid phase extracellular macromolecules. In addition, stimulation should lead to an immediate response for which there are efficient quantitative assays. A system which has these attributes is the in vitro release of histamine from mast cells or basophils. In this system the interaction of cells and inducing agent initiates the exocytosis of histamine within minutes, and this activation can take place in vitro totally independent of extracellular macromolecular species. The rapid time-course allows experiments to be completed within convenient time periods, and the response in terms of the histamine released can be accurately measured with facility.

Keywords

Mast Cell Arachidonic Acid Histamine Release Arachidonic Acid Release Human Basophil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharony, D., Smith, J. B., and Silver, M. S., 1980, Human platelet lipoxygenase requires ferric iron, Fed. Proc., 39: 424.Google Scholar
  2. Alan, M., Anrep, G. V., Barsoum, G. S., Talaat, M., and Weininger, E., 1939, Liberation of histamine from the skeletal muscle by curare, J. Physiol. (Loud), 95: 148.Google Scholar
  3. Altounyan, R. E. C., 1967, Inhibition of experimental asthma by a new compound disodium cromoglycate “intal”, Acta Allergy, 22: 487.Google Scholar
  4. Änggàrd, E., Bergzvist, U., Högberg, B., Johansson, K., Thon, I. L., Uvnäs, B., 1963, Biologically active principles occurring on histamine release from cat paw, guinea pig lung and isolated rat mast cells, Acta Physiol Scand., 59: 97.PubMedCrossRefGoogle Scholar
  5. Assem, E. S. K., and Schild, H. 0., 1969, Inhibition by sympathomimetic amines of histamine release induced by antigen in passively sensitized human lung, Nature, 224: 1028.Google Scholar
  6. Assen, E. S. K., and Monger, J. L., 1970, Inhibition of allergic reactions in man and other species by cromoglycate, Int. Arch. Allergy Appl. Immunol., 38: 68.CrossRefGoogle Scholar
  7. Bach, M. K., and Brashler, J. R., 1974, In vivo and in vitro production of slow reacting substance in the rat upon treatment with calcium ionophores, J. Immunol., 113: 2040.Google Scholar
  8. Bach, M. K., Brashler, J. R., and Gorman, R. R., 1977, On the structure of slow reacting substance of anaphylaxis: evidence of biosynthesis from arachidonic acid, Prostaglandins, 14: 21.PubMedCrossRefGoogle Scholar
  9. Bach, M. K., Brashler, J. R., Hammarström, S., and Samuelsson B., 1980, Identification of a component of rat mononuclear cell SRS as leukotriene D, Biochem. Biophys. Res. Commun., 93: 1121.PubMedCrossRefGoogle Scholar
  10. Balogh, K., Jr., and Cohen, B., 1961, Histochemical demonstration of diaphorases and dehydrogenases in normal human leukocytes and platelets, Blood, 17: 491.PubMedGoogle Scholar
  11. Baltzly, R., Buck, J. S., de Beer, E. J., and Webb, F. J., 1949, A family of long-acting depressors, J. Amer. Chem. Soc., 71: 1301.CrossRefGoogle Scholar
  12. Baxter, J. D., and Tomkins, G. M., 1971, Specific cytoplasmic glucocorticoid hormone receptors in hepatoma tissue culture cells, Proc. Natl. Acad. Sci. USA, 68: 932.PubMedCrossRefGoogle Scholar
  13. Bazin, H., Querinjean, P., Beckers, A., Heremans, J. I., and Dessy, F., 1974, Transplantable immunoglobulin secreting tumors in rats. IV. Sixty-three IgE-secreting immunocytoma tumors, Immunology, 26: 713.PubMedGoogle Scholar
  14. Becker, K. E., Ishizaka, T., Metzger, H., Ishizaka, K., and Grimly, P. M., 1973, Surface IgE on human basophils during histamine release, J. Exp. Med., 138: 394.PubMedCrossRefGoogle Scholar
  15. Bell, R. L., Kennerly, D. A., Stanford, N., and Majerus, P. W., 1979, Diglyceride lipase: a pathway for arachidonate release from human platelets, Proc. Natl. Acad. Sci. USA, 76: 3238.PubMedCrossRefGoogle Scholar
  16. Bennich, H., Ishizaka, K., Ishizaka, T., and Johansson, S. G. 0., 1969, A comparative antigenic study of yE-globulin and myelomaIgND, J. Immunol., 102: 826.PubMedGoogle Scholar
  17. Bennich, H., and Johansson, S. G. 0., 1971, Structure and function of human immunoglobulin E, Adv. Tmmunol., 13: 1.CrossRefGoogle Scholar
  18. Bergstr’âm, S., Ryhage, R., Samuelsson, B., and Sjôvall, J., 1962, The structure of prostaglandin E, F1 and F2, Acta Chem.. Scand., 16: 501.CrossRefGoogle Scholar
  19. Blackwell, G. J., Flower, R. J., Nijkamp, F. P., and Vane, J. R., 1978, Phospholipase A2 activity of guinea-pig isolated perfused lungs: stimulation and inhibition by anti-inflammatory steroids, Br. J. Pharmacol., 62: 79.PubMedGoogle Scholar
  20. Blackwell, G. J., Carnuccio, R., Di Rosa, M., Flower, R. J., Parente, L., and Perisco, P., 1980, Macrocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoids, Nature, 287: 147.PubMedCrossRefGoogle Scholar
  21. Borgeat, P., and Samuelsson, B., 1979a, Arachidonic acid metabolism in polymorphonuclear leukocytes. Unstable intermediate in the formation of dihydroxyacids, Proc. Natl. Acad. Sci. USA, 76: 3213.PubMedCrossRefGoogle Scholar
  22. Borgeat, P., and Samuelsson, B., 1979b, Transformation of arachidonate acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxy eicosatetraenoic acid, J. Biol. Chem., 254: 2643.Google Scholar
  23. Borgeat, P., and Samuelsson, B., 1979c, Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187, Proc. Natl. Acad. Sci. USA, 76: 2148.PubMedCrossRefGoogle Scholar
  24. Borgeat, P., and Samuelsson, B., 1979d, Metabolism of arachidonic acid in polymorphonuclear leukocytes. Structural analysis of novel hydroxylated compounds, J. Biol. Chem., 254: 7865.PubMedGoogle Scholar
  25. Brocklehurst, W. E., 1960, The release of histamine and the formation of a slow reacting substance (SRS-A) during anaphylactic shock, J. Physiol. (Lond), 151: 416.Google Scholar
  26. Brocklehurst, W. E., 1962, Slow reacting substance and related compounds, Prog. Allergy, 6: 539.PubMedGoogle Scholar
  27. Bushby, S. R. M., and Green, A. F., 1955, The release of histamine by polymyxin B and polymyxin E, Br. J. Pharmacol., 10: 215.Google Scholar
  28. Carnuccio, R., Di Rosa, M., and Persico, P., 1980, Hydrocortisone-induced inhibitor of prostaglandin biosynthesis in rat leukocytes, Br. J. Pharmacol., 68: 14.PubMedGoogle Scholar
  29. Carnuccio, R., Di Rosa, M., Flower, R. J., Pinto, A., 1981, The inhibition by hydrocortisone of prostaglandin biosynthesis in rat peritoneal leukocytes is correlated with intracellular macrocortin levels, Br. J. Pharmacol., 74: 322.PubMedGoogle Scholar
  30. Cazal, P., 1955, Mastocytose médullaire et aplasie, Rev. Belge Pathol., 24: 107.Google Scholar
  31. Chakravarty, N. K., 1960a, The mechanism of histamine release in anaphylactic reaction in guinea pig and rat, Acta Physiol. Scand., 48: 146.PubMedCrossRefGoogle Scholar
  32. Chakravarty, N., 1960b, The occurrence of a lipid-soluble smooth muscle stimulating principle (SRS) in anaphylactic reaction, Acta Physiol. Scand., 48: 167.PubMedCrossRefGoogle Scholar
  33. Chakravarty, N. K., 1962a, Aerobic metabolism in anaphylactic reaction in vitro, Am. J. Physiol., 203: 1193.PubMedGoogle Scholar
  34. Chakravarty, N., 1962b, Inhibition of anaphylactic histamine release by 2-deoxyglucose, Nature, 194: 1182.PubMedCrossRefGoogle Scholar
  35. Chakravarty, N., 1965, Glycolysis in rat peritoneal mast cells, J. Biol. Chem., 25: 123.Google Scholar
  36. Chakravarty, N., 1967, Farther observations on the inhibition of histamine release by 2-deoxyglucose, Acta Physiol. Scand., 72: 425.CrossRefGoogle Scholar
  37. Chakravarty, N., 1968, Respiration of rat peritoneal mast cells during histamine release induced by antigen-antibody reaction, Exp. CelL Res., 49: 160.PubMedCrossRefGoogle Scholar
  38. Chakravarty, N., and Echetebu, Z., 1978, Plasma membrane adenosine triphosphatase in rat peritoneal mast cells and macrophages: the relation of mast cell enzyme to histamine release, Biochem. Pharmacol., 27:1561. 2+ 2+Google Scholar
  39. Chakravarty, N., and Nielsen, E. H., 1980, Ca -Mg activated adenosine triphosphatase in plasma and granule membranes in non-secreting and secreting mast cells, Exp. Cell. Res., 130: 175.PubMedCrossRefGoogle Scholar
  40. Cochrane, C. G., and Muller-Eberhard, H. J., 1968, The derivation of two distinct anaphylatoxin activities from the third and fifth components of human complement, J. Exp. Med., 127: 371.PubMedCrossRefGoogle Scholar
  41. Cockcroft, S., and Gomperts, B. D., 1979, Evidence for a role of phosphatidylinositol turnover in stimulus secretion coupling. Biochem. J., 178: 681.PubMedGoogle Scholar
  42. Conrad, D. H., Bazin, H., Sehon, A. H., and Froese, A., 1975, Binding parameters of the interaction between rat IgE and rat mast cell receptors, J. Immunol., 114: 1688.PubMedGoogle Scholar
  43. Conrad, D. H., and Froese, A., 1976, Characterization of the target cell receptors for IgE. II. Polyacrylamide gel analysis of the surface IgE receptor from normal rat mast cells and rat basophilic leukemia cells, J. Immunol., 116: 319.PubMedGoogle Scholar
  44. Conroy, M. C., and Blancuzzi, V., 1979, Differential ability of rat mast cells and human leukocytes to detect inhibitors of histamine release, Monogr. Allergy, 14: 307.PubMedGoogle Scholar
  45. Cooper, P. H., and Stanworth, D. R., 1976, Characterization of calcium ion-activated adenosine triphosphatase in the plasma membrane of rat mast cells, Biochem. J., 156: 691.PubMedGoogle Scholar
  46. Crews, F. T., Morita, Y., Hirata, F., Axelrod, J., and Siraganian, R. P., 1980, Phospholipid methylation affects immunoglobulin E mediated histamine and arachidonic acid release in rat leukemic cells, Biochem. Biophys. Res. Commun., 93: 42.PubMedCrossRefGoogle Scholar
  47. Curnutte, J. T., and Babior, B. M., 1974, Biological defense mechanisms. The effect of bacteria and serum on superoxide production by granulocytes, J. Clin. Invest., 53: 1662.PubMedCrossRefGoogle Scholar
  48. Czapski, G., and Ilan, Y. A., 1978, On the generation of the hydroxylation agent from superoxide radical. Can the Haber-Weiss reaction be the source of.OH radicals? Photochem. Photobiol., 28: 651.CrossRefGoogle Scholar
  49. Dahlén, S., Björk, J., Hedqvist, P., Àrfors, K., Hammarstrôm, S., Lindgren, J., and Samuelsson, B., 1981, Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response, Proc. Natl. Acad. Sci. USA, 78: 3887.PubMedCrossRefGoogle Scholar
  50. Dale, H. H., 1913, The anaphylactic reaction of plain muscle in the guinea pig, J. Pharmacol., 4: 167.Google Scholar
  51. Danon, A., and Assouline, G., 1978, Inhibition of prostaglandin biosynthesis by corticosteroids requires RNA and protein synthesis, Nature, 273: 552.PubMedCrossRefGoogle Scholar
  52. De Lisi, C., and Siraganian, R. P., 1979a, Receptor cross linking and histamine release. I. The quantitative dependence of basophil degranulation on the number of receptor doublets, J. Immunol., 122: 2286.Google Scholar
  53. Delisi, C., and Siraganian, R. P., 1979b, Receptor cross linking and histamine release. II. Interpretation and analysis of anomalous dose response patterns, J. Immunol., 122: 2293.PubMedGoogle Scholar
  54. Dembo, M., Goldstein, B., Sobotka, A. K., and Lichtenstein, L. M., 1979a, Degranulation of human basophils: quantitative analysisGoogle Scholar
  55. of histamine release and desensitization due to a bivalent penicilloyl hapten, J. Immunol., 123:1864.Google Scholar
  56. Dembo, M., Goldstein, B., Sobotka, A. K., and Lichtenstein, L. M., 1979b, Histamine release due to bivalent penicilloyl haptens: the relation of activation and desensitization of basophils to dynamic aspects of ligand binding to cell surface antibody, J. Immunol., 122: 518.PubMedGoogle Scholar
  57. Diamant, B., 1962, Further observations on the effect of anoxia on histamine release from guinea pig and rat lung tissue in vitro, Acta Physiol. Scand., 56: 1.Google Scholar
  58. Diamant, B., 1967, Observations of some metabolic enzymes of the mast cell and macrophage fraction of rat peritoneal cells, Int. Arch. Allergy Appl. Immunol., 32: 236.PubMedCrossRefGoogle Scholar
  59. Diamant, B., and Kruger, P. G., 1967, Histamine release from isolated rat peritoneal mast cells induced by adenosine-5’triphosphate, Acta Physiol. Scand., 71: 291.PubMedCrossRefGoogle Scholar
  60. Diamant, B., Norn, S., Felding, P., Olsen, N., Ziebell, A., and Nissen, J., 1974, ATP level and CO2 production of mast cells in anaphylaxis, Int. Arch. Allergy Appl. Immunol., 47: 894.PubMedCrossRefGoogle Scholar
  61. Douglas, W. W., Kanno, T., and Sampson, S. R., 1967, Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the depolarizing effect of acetylcholine, J. Physiol. (Loud), 191: 107.Google Scholar
  62. Dunn, T. B., and Potter, M., 1957, A transplantable mast cell neoplasm in the mouse, J. Natl. Cancer Inst., 18: 587.PubMedGoogle Scholar
  63. Dvorak, A. M., Newball, H. H., Dvorak, H. F., and Lichtenstein, L. M., 1980, Antigen-induced IgE-mediated degranulation of human basophils, Lab. Invest., 43: 126.PubMedGoogle Scholar
  64. Eccleston, E., Leonard, B. J., Lowe, J. S., and Welford, H. J., 1973, Basophilic leukemia in the albino rat and a demonstration of the basoprotein, Nature (New Biol.), 244: 73.Google Scholar
  65. Ellis, H. V., Johnson, A. R., and Moran, N. C., 1970, Selective release of histamine from rat mast cells by several drugs, J. Pharmacol. Exp. Ther., 175: 267.Google Scholar
  66. Engineer, D. M., Niederhauser, U., Piper, P. J., and Sirois, P., 1978, Release of mediators of anaphylaxis: inhibition of prostaglandin synthesis and the modification of release of slow reacting substance of anaphylaxis and histamine, Br. J. Pharmacol., 62: 61.PubMedGoogle Scholar
  67. Fain, J. N., 1967a, Studies on the role of RNA and protein synthesis in the lipolytic action of growth hormone in isolated fat cells, Adv. Enzyme Regul., 5: 39.PubMedCrossRefGoogle Scholar
  68. Fain, J. N., 1967b, Inhibition of lipolytic action of growth hormone and glycocorticoid by ultraviolet and X-radiation, Science, 157: 1062.PubMedCrossRefGoogle Scholar
  69. Falkenhein, S. F., MacDonald, H., Huber, M. M., Koch, D., and Parker, C. W., 1980, Effect of the 5-hydroperoxide of eicosatetraenoic acid and inhibitors of the lipoxygenase pathway on the formation of slow reacting substance by rat basophilic leukemia cells; direct evidence that slow reacting substance is a product of the lipoxygenase pathway, J. Immunol., 125: 163.PubMedGoogle Scholar
  70. Fawcett, D. W., 1954, Cytological and pharmacological observations on the release of histamine by mast cells, J. Exp. Med., 100: 217.PubMedCrossRefGoogle Scholar
  71. Feldberg, W., and Kellaway, C. H., 1938, Liberation of histamine and formation of a lecithin-like substance by Cobra venom, J. Physiol. (Lend), 94: 187.Google Scholar
  72. Feldberg, W., Holden, H. F., and Kellaway, C. H., 1938, Formation of lysocithin and of muscle-stimulating substance by snake venom, J. Physiol. (Lond), 94: 232.Google Scholar
  73. Feldberg, W., and Paton, W. D. M., 1951, Release of histamine from skin and muscle in cat by opium alkaloids and other histamine liberators, J. Physiol. (Lond), 114: 490.Google Scholar
  74. Fewtrell, C. M. S., and Gomperts, B. D., 1977, Effect of flavone inhibitors of transport ATPases on histamine secretion from rat mast cells, Nature, 265: 635.PubMedCrossRefGoogle Scholar
  75. Fireman, P., Vannier, W. E., and Goodman, H. C., 1963, The associa-tion of skin-sensitizing antibody with the 82A-globulins in sera from ragweed-sensitive patients, J. Exp. Med., 117: 603.PubMedCrossRefGoogle Scholar
  76. Flower, R., Gryglewski, R., Herbaczynska-Cedro, K., and Vane, J. R., 1972, Effects of anti-inflammatory drugs on prostaglandin biosynthesis, Nature, 238: 104.Google Scholar
  77. Flower, R. J., and Blackwell, G. J., 1979, Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation, Nature, 278: 456.Google Scholar
  78. Foreman, J. C., Mongar, J. L., and Gomperts, D., 1973, Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process, Nature, 245: 249.PubMedCrossRefGoogle Scholar
  79. Friedberger, E., 1909, Weitere untersuchungen über eiweissanaphylaxie, Ztschr. Immunitütsforsh., 4: 636.Google Scholar
  80. Froese, A., 1980, Structure and function of the receptor for IgE, CRC Crit. Rev. Immunol., 1: 79.Google Scholar
  81. Furth, J., Hagen, P., and Hirsh, E., 1957, Transplantable mastocytoma in the mouse containing histamine heparin and 5-hydroxytryptamine, Proc. Soc. Exp. Biol. Med., 95: 824.PubMedGoogle Scholar
  82. Gaetzl, E. J., Woods, J. M., and Gorman, R. R., 1977, Stimulation of human eosinophil and neutrophil polymorphonuclear leukocyte chemotaxis and random migration by 12-L-hydroxy-5,8,10,14eicosatetraenoic acid, J. Clin. Invest., 59: 179.CrossRefGoogle Scholar
  83. Goth, A., and Adams, H. R., 1970, Selective effect of phosphatidylserine on macromolecular histamine release in the rat, Fed. Proc., 69: 2087.Google Scholar
  84. Goth, A., Adams, H. R., and Knoohuizen, M., 1971, Phosphatidylserine selective enhancer of histamine release, Science, 173: 1034.PubMedCrossRefGoogle Scholar
  85. Graham, H. T., Wheelwright, R., Parish, H. H., Jr., Marks, A. R., and Lowry, 0. H., 1952, Distribution of histamine among blood elements, Fed. Proc., 11: 350.Google Scholar
  86. Granner, D. K., Hayashi, S., Thompson, E. B., and Tomkins, G. M., 1968, Stimulation of tyrosine aminotransferase synthesis by dexmethasone phosphate in cell culture, J. Mol. Biol., 35: 291.PubMedCrossRefGoogle Scholar
  87. Grant, J. A., Dupree, E., Goldman, A. S., Schultz, D. R., and Jackson, A. L., 1975, Complement mediated release of histamine from human leukocytes, J. Immunol., 114: 1101.PubMedGoogle Scholar
  88. Grant, J. A., Settle, L., Whorton, E. B., and Dupree, E., 1976, Complement-mediated release of histamine from human basophils. II. Biochemical characterization of the reaction, J. Immunol., 117: 450.PubMedGoogle Scholar
  89. Greaves, M. W., and McDonald-Gibson, W., 1972, Inhibition of prostaglandin biosynthesis by corticosteroids, Br. Med. J., 2: 83.PubMedCrossRefGoogle Scholar
  90. Greenwald, J. E., Alexander, M. S., Fertel, R. H., Beach, C. A., Wong, L. K., and Bianchine, J. R., 1980, Role of ferric iron in platelet lipoxygenase activity, Biochem. Biophys. Res. Commun., 96: 817.PubMedCrossRefGoogle Scholar
  91. Gryglewski, R. J., Panczenko, B., Korbut, R., Grodzinska, L., and Ocetkiewicz, A., 1975, Corticosteroids inhibit prostaglandin release from perfused mesenteric blood vessels of rabbit and from perfused lungs of sensitized guinea pig, Prostaglandins, 10: 343.PubMedGoogle Scholar
  92. Haber, F., and Weiss, J., 1934, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. A., 147: 332.CrossRefGoogle Scholar
  93. Ramberg, M., 1976, On the formation of thromboxane B2 and 12Lhydroxy-5,8,10,14-eicosatetraenoic acid (12 No. 20:4) in tissue from the guinea pig, Biochim. Biophys. Acta, 431: 651.Google Scholar
  94. Hamberg, M., and Samuelsson, B., 1973, Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis, Proc. Natl. Acad. Sci. USA. 70: 899.PubMedCrossRefGoogle Scholar
  95. Hamberg, M., and Samuelsson, B., 1974, Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets, Proc. Natl. Acad. Sci„ USA, 71: 3400.PubMedCrossRefGoogle Scholar
  96. Hamberg, M., Svensson, J., Wakabayashi, T., and Samuelsson, B., 1974a, Isolation and structure of two prostaglandin endo-peroxides that cause platelet aggregation, Proc. Natl. Acad. Sci., 71: 345.PubMedCrossRefGoogle Scholar
  97. Ramberg, M., Svensson, J., and Samuelsson, B., 1974b, Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins, Proc. Natl. Acad. Sci., 71: 3824.CrossRefGoogle Scholar
  98. Hamberg, M., Svensson, J., and Samuelsson, B., 1975, Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides, Proc. Natl. Acad. Sci., 72: 2994.PubMedCrossRefGoogle Scholar
  99. Hammarström, S., Murphy, R. C., Samuelsson, B., Clark, D. A., Misokowski, C., and Corey, E. J., 1980, The structure of leukotriene C identification of the amino acid part, Biochem. Biophys. Res. Commun., 91: 1266.CrossRefGoogle Scholar
  100. Henderson, W. R., and Kaliner, M., 1978, Immunologic and nonimmunologic generation of superoxide from mast cells and basophils, J. Clin. Invest., 61: 187.PubMedCrossRefGoogle Scholar
  101. Hirata, F., Axelrod, J., and Crews, F. T., 1979, Concanavalin A stimulates phospholipid methylation and phosphatidylserine decarboxylation in rat mast cells, Proc. Natl. Acad. Sci., 76: 4813.PubMedCrossRefGoogle Scholar
  102. Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science, 209: 1082.PubMedCrossRefGoogle Scholar
  103. Hirata, F., Schiffman, E., Venkatasubramanian, K., Salomon, J., and Axelrod, J., 1980, A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids, Proc. Natl. Acad. Sci., 77: 2533.PubMedCrossRefGoogle Scholar
  104. Hochstein, P., Nordenbrand, K., and Ernster, L., 1964, Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria, Biochem. Biophys. Res. Commun., 14: 323.PubMedCrossRefGoogle Scholar
  105. Högberg, B., and Uvnäs, B., 1958, Inhibitory action of allicin on degranulation of mast cells produced by compound 48/80, histamine liberator from ascaris, lecithinase A and antigen, Acta Physiol. Scand., 44: 157.PubMedCrossRefGoogle Scholar
  106. Högberg, B., and Uvnäs, B., 1960, Further observations on the disruption of rat mesentery mast cells caused by compound 48/80 antigen-antibody reaction, lecithinase A and decylamine, Acta Physiol. Scand., 48: 133.PubMedCrossRefGoogle Scholar
  107. Hokin, M. R., and Hokin, L. E., 1953, Enzyme secretion and incor-poration of P32 into phospholipides of pancreas slices, J. Biol. Chem., 203: 967.PubMedGoogle Scholar
  108. Hong, S. L., and Levine, L., 1976, Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticosteroids, Proc. Natl. Acad. Sci., 73: 1730.PubMedCrossRefGoogle Scholar
  109. Isersky, C., Taurog, J. T., Poy, G., and Metzger, H., 1978, Triggering of cultured neoplastic cells by antibodies to the receptor for IgE, J. Immunol., 121: 549.PubMedGoogle Scholar
  110. Ishizaka, K., Ishizaka, T., and Hornbrook, M. M., 1963, Blocking of Prausnitz-Kästner sensitization with reagin by normal human beta-2A globulin, J. Allergy, 34: 395.PubMedCrossRefGoogle Scholar
  111. Ishizaka, K., Ishizaka, T., and Hornbrook, M. M., 1966a, Physicochemical properties of human reaginic antibody. IV. Presence of a unique immunoglobulin as a carrier of reaginic antibody, J. Immunol., 97: 75.Google Scholar
  112. Ishizaka, K., Ishizaka, T., and Hornbrook, M. M., 1966b, Physicochemical properties of reaginic antibody. V. Correlation of reaginic antibody with y-E globulin antibody, J. Immunol., 97: 840.PubMedGoogle Scholar
  113. Ishizaka, K., and Ishizaka, T., 1969, Immune mechanisms of reversed type reagenic hypersensitivity, J. Immunol., 103: 588.PubMedGoogle Scholar
  114. Ishizaka, T., Ishizaka, K., Johansson, S. G. 0., and Bennich, H., 1969, Histamine release from human leukocytes by anti-yE antibodies, J. Immunol., 102: 884.Google Scholar
  115. Ishizaka, T., Soto, C. S., and Ishizaka, K., 1973, Mechanisms of passive sensitization. III. Number of IgE molecules and its receptor sites on human basophil granulocytes, J. Immunol., 111: 500.PubMedGoogle Scholar
  116. Ishizaka, T., Chang, T. H., Taggart, M., and Ishizaka, K., 1977, Histamine release from mast cells by antibodies against rat basophilic leukemia cell membrane, J. Immunol., 119: 1589.PubMedGoogle Scholar
  117. Ishizaka, T., and Ishizaka, K., 1978, Triggering of histamine release from rat mast cells by divalent antibodies against IgE-receptors, J. Immunol., 120: 800.PubMedGoogle Scholar
  118. Jakschik, B. A., Kulzycki, A., MacDonald, H. H., and Parker, C. W., 1977a, Release of slow reacting substance (SRS) from rat basophil leukemia (RBL-1) cells, J. Immunol., 119: 618.PubMedGoogle Scholar
  119. Jakschik, B. A., Falkenhein, S., and Parker, C. W., 1977b, Precursor role of arachidonic acid in release of slow-reacting substance from rat basophilic leukemia cells, Proc. Natl. Acad. Sci., 74: 4577.PubMedCrossRefGoogle Scholar
  120. Jaques, R., 1965, Non-specific effects of synthetic corticotropin polypeptides, Int. Arch. Allergy Appl. Immunol., 28: 16.Google Scholar
  121. Jasani, B., and Stanworth, D. R., 1972, Studies on the mast cell triggering action of certain artificial histamine liberators, Int. Arch. Allergy Appl. Immunol., 45: 74.CrossRefGoogle Scholar
  122. Jasmin, G., 1956, Etude de l’inflammation anaphylactoide, Rev. Can. Biol., 15: 107.Google Scholar
  123. Johansen, T., and Chakravarty, N., 1972, Dependence of histamine release from rat mast cells on adenosine triphosphate, Naunyn-Schmiedebergs Arch. Pharmacol., 275: 457.PubMedCrossRefGoogle Scholar
  124. Johansen, T., and Chakravarty, N., 1975, The utilization of adenosine triphosphate in rat mast cells during histamine release induced by anaphylactic reaction and compound 48/80, NaunynSchmiedebergs Arch. Pharmacol., 288: 243.CrossRefGoogle Scholar
  125. Johansson, S. G. 0., and Bennich, H., 1967, Immunological studies of an atypical (meyeloma) immunoglobulin, Immunology, 13: 381.Google Scholar
  126. Johnson, A. R., and Moran, N. C., 1969, Selective release of histamine from the mast cell by compound 48/80 and antigen, Am. J. Physiol., 216: 453.PubMedGoogle Scholar
  127. Johnson, A. R., Hugli, T. E., and Miiller-Eberhard, H. J., 1975, Release of histamine from rat mast cells by the complement peptides C3a and C5a, Immunology, 28: 1067.PubMedGoogle Scholar
  128. Johnson, R. A., Morton, D. R., Kinner, J. H., Gorman, R. R., McGuire, J. C., Sun, F. F., Whittaker, N., Bunting, S., Salmon, J., Moncada, S., and Vane, J. R., 1976, The chemical structure of prostaglandin X (prostacyclin), Prostaglandins, 12: 915.PubMedCrossRefGoogle Scholar
  129. Juhlin, L., and Ohman, S., 1964, Basophil and eosinophil leukocytes in cantharidin blisters of patients with various dermatoses, Acta Derm. Venereol., 44: 303.Google Scholar
  130. Kantrowitz, F., Robinson, D. R., McGuire, M. B., and Levine, L., 1975, Corticosteroids inhibit prostaglandin production by rheumatoid synovia, Nature, 258: 737.PubMedCrossRefGoogle Scholar
  131. Kellaway, C. H., and Trethewie, E. R., 1940, The liberation of slow-reacting smooth-muscle stimulating substance in anaphylaxis, Q. J. Exp. Physiol., 30: 121.Google Scholar
  132. Keller, R., 1968, Interrelations between different types of cells. II. Histamine-release from the mast cells of various species by cationic polypeptides of polymorphonuclear luekocyte lysosomes and other cationic compounds, Int. Arch. Allergy Appl. Immunol., 34: 139.PubMedCrossRefGoogle Scholar
  133. Keller, R., 1973, Concanavalin A, a model “antigen” for the in vitro detection of cell-bound reaginic antibody in the rat, Clin. Exp. Immunol., 13: 139.PubMedGoogle Scholar
  134. Kennerly, D. A., Sullivan, T. J., and Parker, C. W., 1979a, Acti-vation of phospholipid metabolism during mediator release from stimulated rat mast cells, J. Immunol., 122: 152.PubMedGoogle Scholar
  135. Kennerly, D. A., Sullivan, T. J., Sylvester, P., and Parker, C. W., 1979b, Diacyglycerol metabolism in mast cells: a potential role in membrane fusion and arachidonic acid release, J. Exp. Med., 150: 1039.PubMedCrossRefGoogle Scholar
  136. Kennerly, D. A., Secosan, C. J., Parker, C. W., and Sullivan, T. J., 1979c, Modulation of stimulated phospholipid metabolism in mast cells by pharmacologic agents that increase cyclic 3’,5’ adenosine monophosphate levels, J. Immunol., 123: 1519.PubMedGoogle Scholar
  137. Kulczcki, A., McNearney, T. A., and Parker, C. W., 1976, The rat basophilic leukemia cell receptor for IgE. I. Characterization as a glycoprotein, J. Immunol., 117: 661.Google Scholar
  138. Kulczycki, A., Jr., Isersky, C., and Metzger, H., 1974, The interaction of IgE with rat basophilic leukemia cells. I. Evidence for specific binding of IgE, J. Exp. Med., 139: 600.PubMedCrossRefGoogle Scholar
  139. Kulczycki, A., Jr., and Metzger, H., 1974, The interaction of IgE with rat basophilic leukemia cells. II. Quantitative aspects of the binding reaction, J. Exp. Med., 140: 1676.PubMedCrossRefGoogle Scholar
  140. Lagunoff, D., 1973, Membrane fusion during mast cell secretion, J. Cell. Biol., 57: 252.PubMedCrossRefGoogle Scholar
  141. Landsteiner, K., 1924, Experiments on anaphylaxis to azoproteins, J. Exp. Med., 39: 631.PubMedCrossRefGoogle Scholar
  142. Landsteiner, K., and Levine, P., 1930, Experiments on anaphylaxis to azoproteins. Third paper, J. Exp. Med., 52: 347.PubMedCrossRefGoogle Scholar
  143. Lawson, D., Fewtrell, C., Gomperts, B., and Raff, M. C., 1975, Antiimmunoglobulin-induced histamine secretion by rat peritoneal mast cells studied by immunoferritin electron microscopy, J. Exp. Med., 142: 391.PubMedCrossRefGoogle Scholar
  144. Lawson, D., Raff, M. C., Gomperts, B., Fewtrell, C., and Gilula, N. D., 1977, Molecular events during membrane fusion. A study of exocytosis in rat peritoneal cells, J. Cell. Biol., 72: 242.PubMedCrossRefGoogle Scholar
  145. Levine, B. B., 1962, N (a-D-Penicilloyl) amines as univalent hapten inhibitors of antibody-dependent allergic reactions to penicillin, J. Med. Chem., 5: 1025.Google Scholar
  146. Lewis, G. P., and Piper, P. J., 1975, Inhibition of release of prostaglandins as an explanation of some of the actions of anti-inflammatory corticosteroids, Nature, 254: 308.PubMedCrossRefGoogle Scholar
  147. Lichtenstein, L. M., 1975, The mechanism of basophil histamine release induced by antigen and by the calcium ionophore A23187, J. Immunol., 114: 1692.PubMedGoogle Scholar
  148. Lichtenstein, L. M., and Osler, A. G., 1964, Studies on the mechanism of hypersensitivity phenomena: histamine release from human leukocytes by ragweed pollen antigen, J. Exp. Med., 120: 507.PubMedCrossRefGoogle Scholar
  149. Lichtenstein, L. M., and Margolis, S. C., 1968, Histamine release in vitro: inhibition by catecholamines and methylxanthines, Science, 161: 902.PubMedCrossRefGoogle Scholar
  150. Lichtenstein, L. M., and De Bernardo, R., 1971, The immediate allergic response: in vitro action of cyclic AMP active and other drugs on the two stages of histamine release, J. Immunol., 107: 1131.PubMedGoogle Scholar
  151. Lund-Oleson, K., and Menander, K. B., 1974, Orgotein: a new anti-inflammatory metalloprotein drug: preliminary evaluation of clinical efficacy and safety in degenerative joint disease, Curr. Ther. Res., 16: 706.Google Scholar
  152. Magro, A. M., 1974a, In vitro studies of concanavalin-A-induced histamine release from human basophils: excess bridging in the inhibitory region of the dose-response curve, Int. Arch. Allergy Appl. Immunol., 47: 433.PubMedCrossRefGoogle Scholar
  153. Magro, A. M., 1974b, Evidence for IgE involvement in Con A induced histamine release from human basophils in vitro, Nature, 249: 512.CrossRefGoogle Scholar
  154. Magro, A. M., 1975, Evidence for one hit activation for the in vitro release of histamine from human basophils, Immunochem., 12: 389.CrossRefGoogle Scholar
  155. Magro, A. M., 1977a, Ethacrynic acid inhibitable Ca2+ and Mg2+ activated membrane adenosine triphosphatase in rat mast cells, Clin. Exp. Immunol., 30: 160.PubMedGoogle Scholar
  156. Magro, A. M., 1977b, Blocking of histamine release from human basophils in vitro by the ATPase inhibitor, ethacrynic acid, Clin. Exp. Immunol., 29: 436.PubMedGoogle Scholar
  157. Magro, A. M., 1980, Creatine phosphokinase in rat mast cells, Immunology, 39: 323.PubMedGoogle Scholar
  158. Magro, A. M., 1981, Histamine release from fawn-hooded rat mast cells is not potentiated by phosphatidylserine, Immunology, 44: 1.PubMedGoogle Scholar
  159. Magro, A. M., 1982, Effect of inhibitors of arachidonic acid metabolism upon IgE and non-IgE mediated histamine release, Int. J. Immunopharmacol., 4: 15.PubMedCrossRefGoogle Scholar
  160. Magro, A. M., and Alexander, A., 1974a, In vitro studies of histamine release from rabbit leukocytes by divalent haptens, J. Immunol., 112: 1757.Google Scholar
  161. Magro, A. M., and Alexander, A., 1974b, Histamine release: in vitro studies of the inhibitory region of the dose-response curve, J. Immunol., 112: 1762.PubMedGoogle Scholar
  162. Magro, A. M., and Bennich, H., 1977, Concanavalin A induced histamine release from human basophils in vitro, Immunology, 33: 51.PubMedGoogle Scholar
  163. Magro, A. M., and Brai, M., 1982, Evidence for lipoxygenase activity in induction of histamine release from rat peritoneal mast cells by chelated iron, Immunology, in press.Google Scholar
  164. Magro, A. M., Cragoe, E. J., Jr., and Hurtado, I., 1982, Effect of sulfhydryl-reactive ATPase inhibitors upon mast cell and basophil activation,(personal observation; to be submitted).Google Scholar
  165. Marone, G., Kagey-Sobotka, A., and Lichtenstein, L., 1979, Effects of arachidonic acid and its metabolites on antigen-induced histamine release from human basophils in vitro, J. Immunol., 123: 1669.PubMedGoogle Scholar
  166. Marone, G., Hammarström, S., and Lichtenstein, L. M., 1980, An inhibitor of lipoxygenase inhibits histamine release from human basophils, Clin. Immunol. Immunopathol., 17: 117.PubMedCrossRefGoogle Scholar
  167. Marquardt, D. L., Nicolotti, R. A., Kennerly, D. A., and Sullivan, T. J., 1981, Lipid metabolism during mediator release from mast cells: studies of the role of arachidonic acid metabolism in the control of phospholipid metabolism, J. Immunol., 127: 845.PubMedGoogle Scholar
  168. Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta, 415: 81.PubMedGoogle Scholar
  169. Mielens, Z. E., and Magro, A. M., 1982, Comparison of effects of investigational compounds upon allergic phenomenon in rodents in vivo and human basophils in vitro, Methods Find. Exp. Clin. Pharmacol., 4: 111.Google Scholar
  170. Mollay, C., Kreil, G., and Berger, H., 1976, Action of phospholipases on the cytoplasmic membrane of escherichia cola. Stimulation by melettin, Biochim. Biophys. Acta, 426: 317.PubMedCrossRefGoogle Scholar
  171. Moncada, S., Gryglewski, R., Bunting, S., and Vane, J. R., 1976, An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation, Nature, 263: 663.PubMedCrossRefGoogle Scholar
  172. Mongar, J. L., and Schild, H. O., 1955, Inhibition of histamine release in anaphylaxis, Nature, 176: 163.PubMedCrossRefGoogle Scholar
  173. Mongar, J. L., and Schild, H. O., 1956, Effect of antigen and organic bases on intra-cellular histamine in guinea-pig lungs, J. Physiol. (Lond), 131: 207.Google Scholar
  174. Mongar, J. L., and Schild, H. O., 1957a, Inhibition of the anaphylactic reaction, J. Physiol. (Lond), 135: 301.Google Scholar
  175. Mongar, J. L., and Schild, H. O., 1957b, Effect of temperature on the anaphylactic reaction, J. Physiol. (Lond), 135: 320.Google Scholar
  176. Mongar, J. L., and Schild, H. O., 1958, The effect of calcium and Ph on the anaphylactic reaction, J. Physiol. (Lond), 140: 272.Google Scholar
  177. Mongar, J. L., and Schild, H. O., 1962, Cellular mechanisms in anaphylaxis, Physiol. Rev., 42: 226.PubMedGoogle Scholar
  178. Mongar, J. L., and Perera, B. A. V., 1965, Oxygen consumption during histamine release by antigen and compound 48/80, Immunology, 8: 511.PubMedGoogle Scholar
  179. Morita, Y., Chiang, P. K., and Siraganian, R. P., 1981, Effect of inhibitors of transmethylation on histamine release from human basophils, Biochem. Pharmacol., 30: 785.Google Scholar
  180. Morris, H. R., Taylor, G. W., Piper, P. J., Sirois, P., and Tippins, J. R., 1978, Slow-reacting substance of anaphylaxis: purification and characterization, FEBSC (letters), 87: 203.CrossRefGoogle Scholar
  181. Morris, H. R., Taylor, G. W., Piper, P. J., and Tippins, J. R., 1980a, Structure of slow-reacting substance of anaphylaxis from guinea pig lung, Nature, 285: 104.PubMedCrossRefGoogle Scholar
  182. Morris, H. R., Taylor, G. W., Piper, P. J., Samhoun, M. N., and Tippins, J. R., 1980b, Slow reacting substance (SRSs): the structure identification of SRSs from rat basophil leukaemia (RBL-1) cells, Prostaglandins, 19: 185.PubMedCrossRefGoogle Scholar
  183. Mota, I., 1959, The mechanism of action of anaphylatoxin. Its effect on guinea pig mast cell, Immunology, 2: 403.PubMedGoogle Scholar
  184. Mota, I., and Dias Da Silva, W., 1960, Antigen induced damage to isolated sensitized mast cells, Nature, 186: 245.PubMedCrossRefGoogle Scholar
  185. Moussatché, H., and Prouvost-Dannon, A., 1958, Influence of oxidative phosphorylation inhibitors on the histamine release in the anaphylactic reaction in vitro, Experientia, 14: 414.PubMedCrossRefGoogle Scholar
  186. Moussatché, H., and Prouvost-Dannon, A., 1962, Influence of inhibitors of the respiratory chain on the release of histamine during the anaphylactic reaction in vitro. Action of antimycin A and carbon monoxide, Biochem. Pharmacol., 11: 603.PubMedCrossRefGoogle Scholar
  187. Müller-Eberhard, H. J., 1960, A new supporting medium for preparative electrophoresis, Scand. J. Clin. Lab. Invest., 12: 33.PubMedCrossRefGoogle Scholar
  188. Murphy, R. C., Hammarstr’ôm, S., and Samueisson, B., 1979, Leukotriene C: a slow-reacting substance from murine mastocytoma cells, Proc. Natl. Acad. Sci., 76: 4275.PubMedCrossRefGoogle Scholar
  189. Nugteren, D. H., and Hazelhof, E., 1973, Isolation and properties of intermediates in prostaglandin biosynthesis, Biochim. Biophys. Acta, 326: 448.PubMedGoogle Scholar
  190. Nÿkamp, F. P., Flower, R. J., Moncada, S., and Vane, J. R., 1976, Partial purification of rabbit aorta contracting substance-releasing factor and inhibition of its activity by anti-inflammatory steroids, Nature, 263: 479.CrossRefGoogle Scholar
  191. Oberley, L. W., Lindgreen, S. A., and Stevens, R. H., 1976, Superoxide ion as the cause of the oxygen effect, Radiat. Res., 68: 320.PubMedCrossRefGoogle Scholar
  192. Ogawa, M., Kochwa, S., Smith, C., Ishizaka, K., and McIntyre, O. R., 1969, Clinical aspects of IgE myeloma, N. Engl. J. Med., 281: 1217.Google Scholar
  193. Ogilvie, B. M., 1967, Reagin-like antibodies in animals immune to helminth parasites, Nature, 204: 91.CrossRefGoogle Scholar
  194. Orange, R. P., and Austen, K. F., 1969, Slow reacting substance of anaphylaxis, Adv. Immunol., 10: 106.Google Scholar
  195. Orange, R. P., Murphy, R. C., and Austen, K. F., 1974, Inactivation of slow reacting substance of anaphylaxis (SRS-A) by arylsulfatases, J. Immunol., 113: 316.PubMedGoogle Scholar
  196. Orange, R. P., and Chang, P. L., 1975, The effect of thiols on immunologic release of slow reacting substance of anaphylaxis. I. Human lung, J. Immunol., 115: 1072.PubMedGoogle Scholar
  197. Orange, R. P., and Moore, E. G., 1976, The effect of thiols on the immunologic release of slow reacting substance of anaphylaxis. II. Other in vitro and in vivo models, J. Immunol., 116: 392.PubMedGoogle Scholar
  198. Osler, A. G., Randall, H. G., Hill, B. M., and Ovary, Z., 1959, Studies on the mechanisms of hypersensitivity phenomena. III. The participation of complement in the formation of anaphylatoxin, J. Exp. Med., 110: 311.Google Scholar
  199. Ovary, Z., 1958, Immediate reactions in the skin of experimental animals provoked by antigen-antibody interaction, Prog. Allergy, 5: 460.Google Scholar
  200. Ovary, Z., and Karush, F., 1960, Studies on the immunologic mechanism of a anaphylaxis. I. Antibody-hapten interactions studied by passive cutaneous anaphylaxis in the guinea pig, J. Immunol., 84: 409.PubMedGoogle Scholar
  201. Parish, W. E., 1967, Release of histamine and slow reacting substance with mast cell changes after challenge of human lung sensitized with reagin in vitro, Nature, 215: 738.PubMedCrossRefGoogle Scholar
  202. Parker, C. W., Kern, M., and Eisen, H. N., 1962, Polyfunctional dinitrophenyl haptens as reagents for elicitation of immediate type allergic skin responses, J. Exp. Med., 115: 789.PubMedCrossRefGoogle Scholar
  203. Parker, C. W., Huber, M. T., and Falkenhein, S., 1979, Incorporation of 35S into slow reacting substance (SRS), Fed. Proc., 38: 1167.Google Scholar
  204. Parker, C. W., Koch, D., Huber, M. M., and Falkenhein, S. F., 1980a, Formation of the cysteinyl form of slow reacting substance (leukotriene E4) in human plasma, Biochem. Biophys. Res. Commun., 97: 1038.PubMedCrossRefGoogle Scholar
  205. Parker, C. W., Falkenhein, S. F., and Huber, M. M., 1980b, Sequential conversion of the glutathionyl side chain of slow reacting substance (SRS) to cysteintyl-glycine and cysteine in rat basophilic leukemia cells stimulated with A-23187, Prostaglandins, 20: 863.PubMedCrossRefGoogle Scholar
  206. Parker, C. W., Koch, D., Huber, M. M., and Falkenhein, S. F., 1980c, Incorporation of radiolable from C-14CC 5-hydroperoxyeicosatetraenoic acid into slow reacting substance, Biochem. Biophys. Res. Commun., 94: 1037.PubMedCrossRefGoogle Scholar
  207. Parrot, J. L., 1942, Sur la reaction cellulaire de l’anaphylaxie. Son charatere aérobie, C.R. Soc. Biol. (Paris), 136: 361.Google Scholar
  208. Pederson, C. T., and Aust, S. D., 1975, The mechanism of liver microsomal lipid peroxidation, Biochem. Biophys. Acta, 385: 232.PubMedCrossRefGoogle Scholar
  209. Peterkofsky, B., and Tomkins, G. M., 1967, Effect of inhibitors of nucleic acid synthesis on steroid-mediated induction of tyrosine aminotransferase in hepatoma cell cultures, J. Mol. Biol., 30: 49.PubMedCrossRefGoogle Scholar
  210. Peters, S. P., Siegel, M. I., Kagey-Sobotka, A., and Lichtenstein, L. M., 1981, Lipoxygenase products modulate histamine release in human basophils, Nature, 292: 455.PubMedCrossRefGoogle Scholar
  211. Petersson, B., Nilsson, A., and Stâlenheim, G., 1975, Induction of histamine release and desensitization in human leukocytes, J. Immunol., 144: 1581.Google Scholar
  212. Piper, P. J., and Vane, J. R., 1969, Release of additional factors in anaphylaxis and its antagonism by anti-inflammatory drugs, Nature, 223: 29.PubMedCrossRefGoogle Scholar
  213. Plaut, P., Marone, G., Thomas, L. L., and Lichtenstein, L. M., 1980, Cyclic-nucleotides in immune responses and allergy, Adv. Cyclic Nucleotide Res., 12: 161.Google Scholar
  214. Prausnitz, C., and Kästner, H., 1921, Ustudien über allergie, Zentr. Bakteriol. Parasitenk. Abt. I Orig., 86: 160.Google Scholar
  215. Quaglino, D., and Hayhoe, F. G., 1960, Acetone fixation for the cytochemical demonstration of dehydrogenases in blood and bone marrow cells, Nature, 187: 85.Google Scholar
  216. Ranadive, N. S., and Cochrane, C. G., 1968, Isolation and character-ization of permeability factors from rabbit neutrophils, J. Exp. Med., 128: 605.PubMedCrossRefGoogle Scholar
  217. Ranadive, N. S., and Cochrane, C. G., 1971, Mechanism of histamine release from mast cells by cationic protein (band 2) from neutrophil lysosomes, J. Immunol., 106: 506.Google Scholar
  218. Reed, P. W., and Lardy, H. A., 1972, A23187: a divalent cation ionophore, J. Biol. Chem., 247: 6970.PubMedGoogle Scholar
  219. Reiss, U., and Gershon, D., 1976, Rat liver superoxide dismutase. Purification and age-related modifications, Eur. J. Biochem., 63: 617.PubMedCrossRefGoogle Scholar
  220. Riley, J. F., and West, G. B., 1952, Histamine in tissue mast cells, J. Physiol.(Lond), 117: 72.Google Scholar
  221. Riley, J. F., and West, G. B., 1953, The presence of histamine release in tissue mast cells, J. Physiol. (Lond), 120: 528.Google Scholar
  222. Roberts, L. J., II, Lewis, R. A., Lawson, J. A., Sweetman, B. J., Austen, K. F., and Oates, J. A., 1978, Arachidonic acid metabolism by rat mast cells, Prostaglandins, 15: 717.CrossRefGoogle Scholar
  223. Röhlich, P., 1975, Membrane associated actin filaments in the cortical cytoplasm of the rat mast cell, Exp. Cell. Res., 93: 293.PubMedCrossRefGoogle Scholar
  224. Röhlich, P., Anderson, P., and Uvnäs, B., 1971, Electron Collier microscope observations on compound 48/80-induced degranulation in rat mast cells, J. Cell. Biol., 51: 465.PubMedCrossRefGoogle Scholar
  225. Rothschild, A. M., 1966, Histamine release by basic compounds, in: “Handbook of Experimental Pharmacology,” O. Eichler and A. Farah, ed., Vol. 18, Histamine and anti-histaminics, Part 1, M. Rocha e Silva, ed., pp. 386–430, Springer-Verlag, New York.Google Scholar
  226. Russo-Marie, F., Paing, M., and Duval, D., 1979, Involvement of glucocorticoid receptors in steroid-induced inhibition of prostaglandin secretion, J. Biol. Chem., 254: 8498.PubMedGoogle Scholar
  227. Saeed, S. A., McDonald-Gibson, W. J., Cuthbert, J., Copas, J. L., Schneider, C., Gardiner, P. J., Butt, N. M., and H. O. J., 1977, Endogenous inhibitor of prostaglandin synthetase, Nature, 270: 32.PubMedCrossRefGoogle Scholar
  228. Samuelsson, B., 1965, On the incorporation of oxygen in the conversion of 8,11,14-eicosatrienoic acid to prostaglandin E, J. Am. Chem. Soc., 87: 3011.PubMedCrossRefGoogle Scholar
  229. Samuelsson, B., Borgeat, P., Hammarstr’ôm, S., and Murphy, R. C., 1979, Introduction of a nomenclature: leukotrienes, Prostaglandins, 17: 785.PubMedCrossRefGoogle Scholar
  230. Schild, H. O., 1936, Histamine release and anaphylactic shock in isolated lungs of guinea pigs, Q. J. Exp. Physiol., 26: 165.Google Scholar
  231. Schleimer, R. P., Lichtenstein, L. M., and Gillespie, E., 1981, Inhibition of basophil histamine release by anti-inflammatory steroids, Nature, 292: 454.PubMedCrossRefGoogle Scholar
  232. Schultz, W. H., 1910, Physiological studies in anaphylaxis. I. The reaction of smooth muscle of the guinea pig sensitized with horse serum, J. Pharmacol., 1: 549.Google Scholar
  233. Seegers, W., and Janoff, A., 1966, Mediators of inflammation in leukocyte lysosomes. VI. Partial purification and characterization of a mast cell-rupturing component, J. Exp. Med., 124: 833.PubMedCrossRefGoogle Scholar
  234. Sessa, G., Freer, J. H., Colacicco, G., and Wiessmann, G., 1969, Interaction of a lytic polypeptide melittin with lipid membrane systems, J. Biol. Chem., 244: 3575.PubMedGoogle Scholar
  235. Sheard, P., Killingback, P. G., and Blair, A. M. J. N., 1967, Antigen induced release of histamine and SRS-A from human lung passively sensitized with reaginic serum, Nature, 216: 283.PubMedCrossRefGoogle Scholar
  236. Shelley, W. B., 1963, Indirect basophil degranulation test for allergy to penicillin and other drugs, J. Am. Med. Assoc., 184: 171.CrossRefGoogle Scholar
  237. Shelley, W. B., and Juhlin, L., 1961, A new test for detecting anaphylactic sensitivity. The basophil reaction, Nature, 191: 1056.CrossRefGoogle Scholar
  238. Shelley, W. B., and Juhlin, L., 1962, In vitro effect of lecithinase A on the cytology of the human basophil, J. Lab. Clin. Med., 60: 589.PubMedGoogle Scholar
  239. Shore, P. A., Burkhalter, A., and Cohn, V. H., Jr., 1959, A method for the fluorometric assay of histamine in tissues, J. Pharmacol. Exp. Ther., 127: 182.PubMedGoogle Scholar
  240. Siraganian, P. A., and Siraganian, R. P., 1974, Basophil activation 1)y concanavalin A: characteristics of the reaction, J. Immunol., 112: 2117.PubMedGoogle Scholar
  241. Siraganian, R. P., 1974, An automated continuous-flow system for the extraction and fluorometric analysis of histamine, Anal. Biochem., 57: 383.PubMedCrossRefGoogle Scholar
  242. Siraganian, R. P., and Osler, A. G., 1970, Antigenic release of histamine from rabbit leukocytes, J. Immunol., 104: 1340.PubMedGoogle Scholar
  243. Siraganian, R. P., Hook, W. A., and Levine, B. B., 1975, Specific in vitro histamine release from basophils by bivalent haptens: evidence for activation by simple bridging of membrane bound antibodies, Immunochemistry, 12: 149.CrossRefGoogle Scholar
  244. Siraganian, R. P., and Hook, W. A., 1977, Mechanism of histamine release by formyl methionine containing peptides, J. Immunol., 119: 2078.PubMedGoogle Scholar
  245. Smith, R. L., and Weidemann, M. J., 1980, Reactive oxygen production associated with arachidonic acid metabolism by peritoneal macrophages, Biochem. Biophys. Res. Commun., 97: 973.Google Scholar
  246. Stanworth, D. R., Humphrey, J. H., Bennich, H., and Johansson, S. G. O., 1967, Specific inhibition of the prausnitz-küstner reaction by an atypical human myeloma protein, Lancet, 2: 330.PubMedCrossRefGoogle Scholar
  247. Stanworth, D. R., Humphrey, J. H., Bennich, H., and Johansson, S. G. O., 1968, Inhibition of prausnitz-küstner reaction by proteolytic-cleavage fragments of a human myeloma protein of immunoglobulin class E, Lancet, 2: 17.PubMedCrossRefGoogle Scholar
  248. Stenson, W. F., Parker, C. W., and Sullivan, T. J., 1980, Augmentation of IgE-mediated release of histamine by 5-hydroxyeicosatetraenoic acid, Biochem. Biophys. Res. Commun., 96: 1045.CrossRefGoogle Scholar
  249. Strandberg, K., and Uvnäs, B., 1971, Purifications and properties of slow reacting substance formed from cat paw perfused with compound 48/80, Acta Physiol. Scand., 82: 358.PubMedCrossRefGoogle Scholar
  250. Strandberg, K., Möolby, R., and Wadström, T., 1974, Histamine release from mast cells by highly purified phospholipase C (alpha-toxin) and thetatoxin from clostridium prefringens, Toxicon, 12: 199.PubMedCrossRefGoogle Scholar
  251. Sullivan, T., and Parker, C. W., 1979, Possible role arachidonic acid and its metabolites in mediator release from rat mast cells, J. Immunol., 122: 431.PubMedGoogle Scholar
  252. Svingen, B. A., O’Neal, F. 0., and Aust, S. D., 1978, The role of superoxide and singlet oxygen in lipid peroxidation, Photochem. Photobiol., 28: 803.Google Scholar
  253. Sydbom, A., Fredholm, B., and Uvnüs, B., 1981, Evidence against a role of cyclic nucleotides in the regulation of anaphylactic histamine release in isolated mast cells, Acta Physiol. Scand., 112: 47.PubMedCrossRefGoogle Scholar
  254. Tam, S., Hong, S. L., and Levine, L., 1977, Relationships among the steroids of anti-inflammatory properties and inhibition of prostaglandin production and arachidonic acid release by transformed mouse fibroblasts, J. Pharmacol. Exp. Ther., 203: 162.PubMedGoogle Scholar
  255. Tashjian, A. H., Jr., Voelkel, E. F., McDonough, J., and Levine, L., 1975, Hydrocortisone inhibits prostaglandin production by mouse f ibrosarcoma cells, Nature, 258: 739.PubMedCrossRefGoogle Scholar
  256. Tillett, W. S., Avery, 0. T., and Geobel, W. F., 1929, Chemoimmuno-logical studies on conjugated carbohydrate-proteins. III. Active and passive anaphylaxis with synthetic sugar-proteins, J. Exp. Med., 50: 551.Google Scholar
  257. Tolone, G., Bonasera, L., and Tolone, C., 1976, Biosynthesis and release of prostaglandins by mast cells, Br. J. Exp. Pathol., 59: 105.Google Scholar
  258. Turner, S. R., Tainer, J. A., and Lynn, W. W., 1975, Biogenesis of chemotactic molecules by arachidonate lipoxygenase system of platelets, Nature, 257: 680.PubMedCrossRefGoogle Scholar
  259. Uvnüs, B., 1964, Release processes in mast cells and their activation by injury, Ann. NY Acad. Sci., 116: 880.CrossRefGoogle Scholar
  260. Uvnüs, B., and Thon, I. L., 1959, Isolation of biologically intact “mast cells”. Exp. Cell. Res., 18: 512.CrossRefGoogle Scholar
  261. Vaerman, J. P., Epstein, W., Fudenberg, H., and Ishizaka, K., 1964, Direct demonstration of reagin activity in purified ylAglobulin, Nature, 203: 1046.PubMedCrossRefGoogle Scholar
  262. Valentine, W. N., Lawrence, J. S., Pearse, M. L., and Beck, W. S., 1955, Relationship of basophil to blood histamine in man, Blood, 10: 154.PubMedGoogle Scholar
  263. Vallota, E. H., and Müller-Eberhard, H. J., 1973, Formation of C3a and C5a anaphylatoxins in whole human serum after inhibition of the anaphylatoxin inactivator, J. Exp. Med., 137: 1109.PubMedCrossRefGoogle Scholar
  264. Vane, J. R., 1971, Inhibition of prostaglandin synthesis as a mechanism of action for aspirin like drugs, Nature, 231: 232.Google Scholar
  265. Van Hemmen, J. J., and Meuling, W. J. A., 1975, Inactivation of biologically active DNA by gamma induced superoxide radicals and their dismutation products singlet molecular oxygen and hydrogen peroxide, Biochim. Biophys. Acta, 402: 133.PubMedGoogle Scholar
  266. Vogt, W., 1957, Pharmacologically active substance formed in egg yolk by Cobra venom, J. Physiol. (Loud), 136: 131.Google Scholar
  267. Voorhees, A. B., Baker, H. J., and Pulaski, E. J., 1951, Reactions of albino rats to injections of dextran, Proc. Soc. Exp. Biol. Med., 76: 254.PubMedGoogle Scholar
  268. West, C. B., 1974, Further analysis of the resistance of a colony of rats to dextran, Int. Arch. Allergy Appl. Immunol., 47: 296.PubMedCrossRefGoogle Scholar
  269. Whelan, C. J., 1978, Histamine release from rat peritoneal mast cells by phospholipase A. The “activation” of phospholipase A by phospholipids, Biochem. Pharmacol., 27: 2115.PubMedCrossRefGoogle Scholar
  270. Willis, A. L., and Kuhn, D. C., 1973, A new potential mediator of arterial thrombosis whose biosynthesis is inhibited by aspirin, Prostaglandins, 4: 127.PubMedCrossRefGoogle Scholar
  271. Yagi, Y., Maier, P., Pressman, D., Arbesman, C., and Reisman, R. E., 1963, The presence of the ragweed-binding antibodies in the βA-B2M and γ-globulins of the sensitive individuals, J. Immunol., 91: 83.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Albert M. Magro
    • 1
  1. 1.Kidney Disease Institute, Center for Laboratories and ResearchNew York State Department of HealthAlbanyUSA

Personalised recommendations