Advertisement

Membrane Fluorescence Anisotropy Behavior during Cell Cycle

  • O. Sapora
  • T. Parasassi
  • L. M. Padovani
  • F. Conti
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)

Abstract

Several studies have indicated that the cell surface could play an important role in the control of cell cycle, growth, differentiation and transformation[1,2]. Furthermore such biological events appear to be related to variations in the structure and chemical-physical behavior of the lipid-protein bilayer matrix. The characteristics of the bilayer are dependent on the composition as well as on the interactions between the different components[3,4,5].

Keywords

Chronic Myeloid Leukemia K562 Cell Fluorescence Anisotropy Rous Sarcoma Virus Inhibitor Removal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. L. Nicolson, Biochim.Biophys.Acta, 457: 57 (1976).Google Scholar
  2. 2.
    G. L. Nicolson, G. Poste, and T. H. Ji, in: “Cell Surface Reviews”, G. Poste and G. L. Nicolson, eds., North Holland Publishing Co., Amsterdam, vol. 3 (1977).Google Scholar
  3. 3.
    S. Cheng and D. Levy, Arch.Biochem.Biophys., 196: 424 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    S. W. De Laat, P. T. Van der Saag, E. L. Elson, and J. Schlessinger, Biochim.Biophys.Acta, 558: 247 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    R. L. Maldonado and H. A. Blough, Virology, 102: 62 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    C. B. Lozzio and B. B. Lozzio, Blood, 45: 321 (1975).PubMedGoogle Scholar
  7. 7.
    L. C. Andersson, M. Jokinen, and C. G. Gahmbery, Nature (London), 278: 364 (1979).CrossRefGoogle Scholar
  8. 8.
    M. Fukuda, H. P. Koeffler, and J. Minowada, Proc.Nat.Acad.Sci. USA, 78: 6299 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Ooka, D. N. Weatley, A. M. Badger, and S. R. Cooperband, Meth.Cell Biol., XIV, 287, 298, 314 (1976).Google Scholar
  10. 10.
    O. S. Frankfurt, J.Cell Physiol., 107: 115 (1981).CrossRefGoogle Scholar
  11. 11.
    W. G. Thilly, Meth.Cell Biol., XIV, 273 (1976).Google Scholar
  12. 12.
    S. W. De Laat, P. T. Van der Saag, and M. Shinitzky, Proc.Nat. Acad.Sci.USA, 74: 4458 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Shinitzky and M. Inbar, J.Mol.Biol., 85: 603 (1974).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Inbar, M. Shinitzsky, and L. Sachs, FEBS Lett., 38: 268 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    S. M. Johnson and R. Robinson, Biochim.Biophys.Acta, 558: 282 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    J. Garrido, Exp.Cell Res., 94: 159 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    C. L. Mummery, J. Booustra, P. Van der Saag, and S. W. De Laat, J.Cell Physiol., 107: 1 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • O. Sapora
    • 1
  • T. Parasassi
    • 2
  • L. M. Padovani
    • 1
  • F. Conti
    • 2
  1. 1.Laboratorio di Tossicologia ComparataIstituto Superiore di SanitàRomaItaly
  2. 2.Istituto di Chimica FisicaUniversità degli Studi di RomaRomaItaly

Personalised recommendations