Membrane Fluidity and Membrane Activities

  • H. K. Kimelberg
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)


Observations that changes in membrane fluidity affect a wide variety of membrane and cellular activities 1–5 greatly stimulated interest in the study of membrane fluidity. It also suggested that such effects could be used to monitor such changes. In this chapter I will discuss selected examples of cases in which membrane fluidity seems to affect membrane enzymes, ion transport and hormone-receptor interactions in both reconstituted and natural membranes.


ATPase Activity Membrane Fluidity Arrhenius Plot NADH Reductase Shuttle Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Lenaz, The role of lipids in the structure and function of membranes, in: Subcellular Biochemistry, D.B. Roodyn, ed., Plenum Press, New York and London (1979).Google Scholar
  2. 2.
    H.K. Kimelberg, The influence of membrane fluidity on the activity of membrane-bound enzymes, in: Cell Surface Reviews, G. Poste and G.L. Nicolson, eds., ASP Biological and Medical Press (1977).Google Scholar
  3. 3.
    R.B. Freedman, Membrane-bound enzymes, in: Membrane Structure, J.B. Finean and R.H. Michell, eds., Elsevier/North Holland, Amsterdam, New York and Oxford (1981).Google Scholar
  4. 4.
    Membrane Fluidity. Biophysical and Cellular Regulation, M. Kates and A. Kuksis, eds., The Humana Press, Clifton, N.J. (1980).Google Scholar
  5. 5.
    H. Sandermann, Jr., Regulation of membrane enzymes by lipids, Biochim. Biophys. Acta 515: 209 (1978).Google Scholar
  6. 6.
    J.K. Raison, The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systems, Bioenergetics 4: 285 (1973).CrossRefGoogle Scholar
  7. 7.
    M. Dixon and E.C. Webb, Enzymes, Academic Press, New York (1964).Google Scholar
  8. 8.
    J. Kumamoto, J.K. Raison and J.M. Lyons, Temperature “breaks” in Arrhenius plots: A thermodynamic consequence of a phase change, J. Theor. Biol. 31: 47 (1971).PubMedCrossRefGoogle Scholar
  9. 9.
    C. Hidalgo, N. Ikemoto and J. Gergely, Role of phospholipids in the calcium-dependent ATPase of the sarcoplasmic reticulum, J. Biol. Chem. 251: 4224 (1976).PubMedGoogle Scholar
  10. 10.
    G. Inesi, M. Millman and S. Eletr, Temperature-induced transitions of function and structure in sarcoplasmic reticulum membranes, J. Mol. Biol. 81: 483 (1973).PubMedCrossRefGoogle Scholar
  11. 11.
    H.K. Kimelberg, Protein-liposome interactions and their relevance to the structure and function of cell membranes, Molec. Cell. Biochem. 10:171 (1.976).Google Scholar
  12. 12.
    V. Massey, Studies on fumerase 3. The effect of temperature, Biochem. J. 53: 72 (1953).Google Scholar
  13. 13.
    V. Massey, B. Curti and H. Ganther, A temperature-dependent conformational change in D-amino acid oxidase and its effect on catalysis, J. Biol. Chem. 241: 2347 (1966).PubMedGoogle Scholar
  14. 14.
    N. Gruener and Y. Avi-Dor, Temperature-dependence of activation and inhibition of rat-brain adenosine triphosphatase activated by sodium and potassium ions, Biochem. J. 100: 762 (1966).PubMedGoogle Scholar
  15. 15.
    K. Bowler and C.J. Duncan, The effect of temperature on the Mg2+-dependent and Na+-K+ ATPase of a rat brain microsomal preparation, Comp. Biochem. Physiol. 24: 1043 (1968).Google Scholar
  16. 16.
    H.K. Kimelberg and D. Papahadjopoulos, Phospholipid requirements for (Na++K+)-ATPase activity: Head-group specificity and fatty acid fluidity, Biochim. Biophys. Acta 282: 277 (1972).CrossRefGoogle Scholar
  17. 17.
    H.K. Kimelberg, Alterations in phospholipid-dependent (Na+K) ATPase activity due to lipid ‘fluidity. Effects of cholesterol and Mg2+, Biochim. Biophys. Acta 413: 142 (1975).Google Scholar
  18. 18.
    C.J. Livingstone and D. Schachter, Lipid dynamics and lipid-protein interactions in rat hepatocyte plasma membranes, J. Biol. Chem. 255: 10902 (1980).PubMedGoogle Scholar
  19. 19.
    M.D. Houslay and R.W. Palmer, Changes in the form of Arrhenius plots of the activity of glucagon-stimulated adenylate cyclase and other hamster liver plasma-membrane enzymes occurring on hibernation, Biochem. J. 184: 909 (1978).Google Scholar
  20. 20.
    J.S. Charnock, Effect of lipid composition on activity of membrane bound enzymes in: Advances in Experimental Medicine and Biology, S. Wolf and A.K. Murray, eds. Plenum Press, New York and London (1981).Google Scholar
  21. 21.
    J.R. Riordan, Plasma membrane Mg2+ ATPase activity is inversely related to lipid fluidity in: Membrane Fluidity. Biophysical and Cellular Regulation, M. Kates and A. Kuksis, eds., The Humana Press, Clifton, New Jersey (1980).Google Scholar
  22. 22.
    M. Sinensky, K.P. Minneman and P.B. Molinoff, Increased membrane acyl chain ordering activates adenylate cyclase, J. Biol. Chem. 254: 9135 (1979).PubMedGoogle Scholar
  23. 23.
    M. Edidin, Molecular motions and membrane organization and function in: Membrane Structure, J.B. Finean and R.H. Michell, eds., Elsevier/North Holland, Amsterdam, New York and Oxford (1981).Google Scholar
  24. 24.
    P. Strittmatter and M.J. Rogers, Apparent dependence of interactions between cytochrome b5 and cytochrome b5 reductase upon translational diffusion in dimyristoyl lecithin liposomes, Proc. Nat. Acad. Sci. USA 72: 2658 (1975).PubMedCrossRefGoogle Scholar
  25. 25.
    G. Rimon, E. Hanski, S. Braun and A. Levitzki, Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity, Nature 276: 394 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Krasne, G. Eisenman and G. Szabo, Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin, Science 174: 412 (1971).PubMedCrossRefGoogle Scholar
  27. 27.
    A.L. Obaid and E.D. Crandall, HCO3/Cl-exchange across the human erythrocyte membrane: Effects of pH and temperature, J. Membrane Biol. 50: 23 (1979).CrossRefGoogle Scholar
  28. 28.
    L. Lacko, B. Wittke and P. Geck, The temperature dependence of the exchange transport of glucose in human erythrocytes, J. Cell. Physiol. 82: 213 (1973).PubMedCrossRefGoogle Scholar
  29. 29.
    C. Ziemann and G. Zimmer, Alkaline phosphatase in red cell membrane: Interconnection of activities and membrane lipid fluidity in: Membrane Fluidity. Biophysical and Cellular Regulation, M. Kates and A. Kuksis, eds., The Humana Press, Clifton, New Jersey (1980).Google Scholar
  30. 30.
    G. Romey, R. Chicheportiche and M. Lazdunski, Transition temperatures of the electrical activity of ion channels in the nerve membrane, Biochim. Biophys. Acta 602: 610 (1980).CrossRefGoogle Scholar
  31. 31.
    F. Hirata and J. Axelrod, Phospholipid methylation and biological signal transmission, Science 209: 1082 (1980).PubMedCrossRefGoogle Scholar
  32. 32.
    F. Hirata and J. Axelrod, Enzymatic methylation of phosphatidylethanolamine increases erythrocyte membrane fluidity, Nature 275: 219 (1978).PubMedCrossRefGoogle Scholar
  33. 33.
    H.K. Kimelberg and D. Papahadjopoulos, Effects of phospholipid acyl Cain fluidity, phase transitions and cholesterol on (Na++K)-stimulated adenosine triphosphatase, J. Biol. Chem. 249: 1071 (1974).PubMedGoogle Scholar
  34. 34.
    J.C. Gomez-Fernandez, F.M. Gini, D. Bach, C.J. Restall and D. Chapman, Biophysical studies of (Ca2+ + Mg2+)-ATPase reconstituted systems, Biochim. Biophys. Acta 597: 502 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • H. K. Kimelberg
    • 1
  1. 1.Div. of Neurosurgery, Depts. of Anatomy and Biochemistry Albany Medical College and Dept. of BiologyState University of New York at AlbanyAlbanyUSA

Personalised recommendations