Membrane Fluidity and Lipid Composition

  • H. K. Kimelberg
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)


The fluidity of a fluid is the reciprocal of its viscosity which in turn is a measure of the resistance of the fluid to movement within it 1, 2. The unit of viscosity is the Poise (P) and, measured by the motion of various physical probes, membranes at ambient temperatures seem to be far more viscous or far less fluid than ordinary liquids which are of the order of 10−2 poise or a centipoise (cP). The viscosity of red blood cell membranes was found to vary from 2.0 to 6.0 P with increasing cholesterol/phospholipid ratios 3. Fluid lecithin phospholipid membranes have viscosities around 1 P at temperatures of 30° 4, which is approximately the viscosity of light oil 5.


Differential Scanning Calorimetry Electron Spin Resonance Head Group Membrane Fluidity Phospholipid Bilayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.H. Hildebrand, Motions of molecules in liquids: viscosity and diffusivity, Science 174: 490 (1971).PubMedCrossRefGoogle Scholar
  2. 2.
    J.H. Hildebrand and R.H. Lamoreaux, Fluidity: a general theory, Proc. Nat. Acad. Sci. USA 69: 3428 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    R.A. Cooper, Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells, J. Supramolecular Structure 8: 413 (1978).CrossRefGoogle Scholar
  4. 4.
    U. Cogan, M. Shinitzky, G. Weber and T. Nishida, Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes, Biochemistry 12: 521 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    D. Marsh, Spectroscopic studies of membrane stucture, in: Essays in Biochemistry, P.N. Campbell and W.N. Aldridge, eds., Academic Press, London, New York and San Francisco (1975).Google Scholar
  6. 6.
    M. Edidin, Molecular motions and membrane organization and function, in: Membrane Structure, J.B. Finean and R.H. Michell, eds., Elsevier/North Holland, Amsterdam, New York, Oxford (1981).Google Scholar
  7. 7.
    W.E.M. Lands, Fluidity of membrane lipids, in: Membrane Fluidity. Biophysical and Cellular Regulation, M. Kates and A. Kuksis, eds., The Humana Press, Clifton, New Jersey (1980).Google Scholar
  8. 8.
    D. Papahadjopoulos and H.K. Kimelberg, Phospholipid vesicles (liposomes) as models for biological membranes: Their properties and interactions with cholesterol and proteins, in: Progress in Surface Science, S.G. Davison, ed., Pergamon, Oxford (1973).Google Scholar
  9. 9.
    K. Jacobson and D. Papahadjopoulos, Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. Biochemistry 14: 142 (1975).CrossRefGoogle Scholar
  10. 10.
    E. Oldfield and D. Chapman, Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol, FEBS Lett. 23: 285 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    H-J. Hinz and J.M. Sturtevant, Calorimetric studies of dilute aqueous suspensions of bilayers formed from synthetic L-alecithins, J. Biol. Chem. 247: 6071 (1972).PubMedGoogle Scholar
  12. 12.
    B.D. Ladbrooke and D. Chapman, Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem. Phys. Lipids 3: 304 (1969).PubMedCrossRefGoogle Scholar
  13. 13.
    D. Papahadjopoulos, M. Moscarello, E.H. Eylar and T. Isac, Effects of proteins on thermotropic phase transitions of phospholipid membranes. Biochim. Biophys. Acta 401: 317 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    H.K. Kimelberg and D. Papahadjopoulos, Effects of phospholipid acyl chain fluidity, phase transitions and cholesterol on (Na++K+)-stimulated adenosine triphosphatase. J. Biol. Chem. 249: 1071 (1974).PubMedGoogle Scholar
  15. 15.
    M.C. Phillips, D.B. Ladbrooke and D. Chapman, Molecular interactions in mixed lecithin systems, Biochim. Biophys. Acta 196: 35 (1970).CrossRefGoogle Scholar
  16. 16.
    D. Chapman, J. Urbina and K.M. Keough, Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry. J. Biol. Chem. 249: 2512 (1974).PubMedGoogle Scholar
  17. 17.
    H.K. Kimelberg, The influence of membrane fluidity on the activity of membrane-bound enzymes, in: Cell Surface Reviews, G. Poste and G.L. Nicolson eds., ASP Biological and Medical Press (1977).Google Scholar
  18. 18.
    D. Papahadjopoulos and N. Miller, Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals. Biochim. Biophys. Acta 135: 624 (1967).PubMedCrossRefGoogle Scholar
  19. 19.
    W.L. Hubbell and H.M. McConnell, Molecular motion in spin-labeled phospholipids and membranes, J. Am. Chem. Soc. 93: 314 (1971).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Seelig and W. Niederberger, Two pictures of a lipid bilayer. A comparison between deuterium label and spin-label experiments, Biochemistry 13: 1585 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    P.E. Godici and F.R. Landsberger, The dynamic structure of lipid membranes. A 13C nuclear magnetic resonance study using spin labels. Biochemistry 13: 362 (1974).PubMedCrossRefGoogle Scholar
  22. 22.
    E.J. Shimshick and H.M. McConnell, Lateral phase separation in phospholipid membranes, Biochemistry 12: 2351 (1973).PubMedCrossRefGoogle Scholar
  23. 23.
    H. Trauble, The movement of molecules across lipid membranes: A molecular theory. J. Membrane Biol. 4: 193 (1971).CrossRefGoogle Scholar
  24. 24.
    M.C. Phillips, The physical state of phospholipids and cholesterol in monolayers, bilayers and membranes, in: Progress in Surface and Membrane Science, J.F. Danielli, M.D. Rosenberg and D.A. Cadenhead, eds., Academic Press, New York (1972).Google Scholar
  25. 25.
    M.K. Jain, Role of cholesterol in biomembranes and related systems, in: Current Topics in:Membranes and Transport, F. Bronner and A. Kleinzeller, eds., Academic Press, New York (1975).Google Scholar
  26. 26.
    J.E. Rothman and D.M. Engelman, Molecular mechanism for the interaction of phospholipid with cholesterol, Nature (London) New Biol. 237: 42 (1972).CrossRefGoogle Scholar
  27. 27.
    D. Chapman, Recent physical studies of phospholipids and natural membranes, in: Biological Membranes, D. Chapman, ed., Academic Press, London (1968).Google Scholar
  28. 28.
    R.P. Rand and V. Luzzati, X-Ray diffraction study in water of lipids extracted from human erythrocytes. The position of cholesterol in the lipid lamellae, Biophys. J. 8: 125 (1968).Google Scholar
  29. 29.
    B.D. Ladbrooke, R.M. Williams and D. Chapman, Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim. Biophys. Acta 150: 333 (1968).PubMedCrossRefGoogle Scholar
  30. 30.
    D. Papahadjopoulos, W.J. Vail, W.A. Pangborn and G. Poste, Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by Ca2+ and other divalent metals, Biochim. Biophys. Acta 448: 265 (1976b).CrossRefGoogle Scholar
  31. 31.
    D. Papahadjopoulos and S. Ohki, Stability of asymmetric phospholipid membranes. Science 164: 1075 (1969).PubMedCrossRefGoogle Scholar
  32. 32.
    H. Träuble and H. Eibl, Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment, Proc. Nat. Acad. Sci. USA 71: 214 (1972).CrossRefGoogle Scholar
  33. 33.
    T. Ohnishi and H. Kawamura, Clustering of lecithin molecules in phosphatidylserine membranes induced by calcium ion binding to phosphatidylserine, Biochem. Biophys. Res. Commun. 51: 132 (1973).CrossRefGoogle Scholar
  34. 34.
    D. Papahadjopoulos, K. Jacobson, G. Poste and G. Shepherd, Effects of local anesthetics on membrane properties. I. Changes in the fluidity of phospholipid bilayers. Biochim. Biophys. Acta 394: 504 (1975).PubMedCrossRefGoogle Scholar
  35. 35.
    T. Ito and S.-I. Ohnishi, Ca2+-induced lateral phase separations in phosphatidic acid-phosphatidylcholine membranes. Biochim. Biophys. Acta 352: 29 (1974).PubMedCrossRefGoogle Scholar
  36. 36.
    J.C. Gomez-Fernandez, F.M. Gini, D. Bach, C.J. Restall and D. Chapman, Biophysical studies of (Ca2+ + Mg2+)-ATPase reconstituted systems, Biochim. Biophys. Acta 598: 502 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    P. Jost, O.H. Griffith, R.A. Capaldi and G. Vanderkooi, Evidence for boundary lipid in membranes. Proc. Nat. Acad. Sci. USA 70: 480 (1973)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • H. K. Kimelberg
    • 1
  1. 1.Div. of Neurosurgery, Depts. of Anatomy and Biochemistry Albany Medical College and Dept. of BiologyState University of New York at AlbanyAlbanyUSA

Personalised recommendations