Advertisement

Correlation between Steady-State and Time-Resolved Fluorescence Anisotropy Data

  • W. van der Meer
  • H. Pottel
  • W. Herreman
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)

Abstract

The most common fluorescence depolarization measurement is a steady-state experiment. Continuous illumination with monochromatic polarized light is used to excite fluorescent probes embedded in the lipid regions of the membrane sample. One measures the fluorescence intensities parallel (I) and perpendicular (I) to the polarization direction of the excitation light. The relevant parameter is the steady-state fluorescence anisotropy (FA), defined as
$${r_s} = \left( {{I_\parallel } - {I_ \bot }} \right)/\left( {{I_\parallel } + 2{I_ \bot }} \right)$$
(1)
Here we are concerned with the FA of the probe 1,6-diphenyl-1,3,5hexatriene (DPH) in a membrane system which is macroscopically isotropic. In that case we have 0 ≤rs ≤ro; theoretically ro equals 0.4, experimental values lie between 0.362 [1] and 0.395 [2]. The steady-state FA, rs, reflects the hindrance of the probe rotation; rs = ro means that the probes do not rotate within the fluorescence lifetime and rs = 0 means that the probe molecules rotate rapidly and without restriction within that time.

Keywords

Fluorescence Lifetime Fluorescence Anisotropy Rotational Correlation Time Purple Membrane Lipid Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Shinitzky and Y. Barenholz, Biochim.Biophys.Acta 515: 367 (1978).PubMedGoogle Scholar
  2. 2.
    K. Kinosita, R. Kataoka, Y. Kimura, 0. Gotoh, and A. Ikegami, Biochemistry 20: 4270 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    M. P. Hyen, FEBS Lett. 108: 359.Google Scholar
  4. 4.
    F. Jähnig, Proc.Natl.Acad.Sci.USA 76:6361.Google Scholar
  5. 5.
    M. Shinitzky and I. Yuli, Chem.Phys.Lipids 30: 261 (1982).CrossRefGoogle Scholar
  6. 6.
    M. P. Heyn, R. J. Cherry, and N. A. Dencher, Biochemistry 20: 840 (1981).Google Scholar
  7. 7.
    H. Pottel, W. van der Meer, and W. Herreman, submitted to FEBS Lett.Google Scholar
  8. 8.
    W. J. Van Blitterswijk, R. P. Van Hoeven, and W. Van der Meer, Biochim.Biophys.Acta 644: 323 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Kinosita, S. Kawato, and A. Ikegami, Biophys.J. 20: 289 1977 ).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Kawato, K. Kinosita, and A. Ikegami, Biochemistry 16: 2319 (1977).CrossRefGoogle Scholar
  11. 11.
    C. D. Stubss, T. Kouyama, K. Kinosita, and A. Ikegami, Biochemistry 20: 4257 (1981).CrossRefGoogle Scholar
  12. 12.
    S. Kawato, K. Kinosita, and A. Ikegami, Biochemistry 17: 5026 (1978).CrossRefGoogle Scholar
  13. 13.
    K. Hildenbrand and C. Nicolau, Biochim.Biophys.Acta 553: 365 (1979).CrossRefGoogle Scholar
  14. 14.
    C. Send, D. Genest, A. Obrénvitch, P. Wahl, and M. Monsigny, FEBS Lett. 88: 181 (1978).Google Scholar
  15. 15.
    C. E. Martin and D. C. Foyt, Biochemistry 17: 3587 (1978).CrossRefGoogle Scholar
  16. 16.
    A. H. Parola, P. W. Robbins, and E. R. Blout, Exp.Cell Res. 118: 205 (1979).Google Scholar
  17. 17.
    A. H. Parola, P. W. Robbins, and E. R. Blout, Israel J.Med.Sci. 12: 1362 (1976).Google Scholar
  18. 18.
    J. R. Lakowicz and F. G. Prendergast, Science 200: 1399 (1978).Google Scholar
  19. 19.
    J. R. Lakowicz, F. G. Prendergast, and D. Hogen, Biochemistry 18: 508 (1979).CrossRefGoogle Scholar
  20. 20.
    G. Lipari and A. Szabo, Biophys.J. 30: 489 (1980).CrossRefGoogle Scholar
  21. 21.
    C. Zannoni, Molec.Phys. 38: 1813 (1979).CrossRefGoogle Scholar
  22. 22.
    C. Zannoni, Molec.Phys. 42: 1303 (1981).CrossRefGoogle Scholar
  23. 23.
    G. Moro and P. L. Nordio, Chem.Phys. 43: 303 (1979).CrossRefGoogle Scholar
  24. 24.
    P. K. Wolber and B. S. Hudson, Biophys.J. 37: 262 (1982).Google Scholar
  25. 25.
    D. Grünberger, R. Haimovitz, and M. Shinitzky, Biochim.Biophys. Acta, 688: 764 (1982).Google Scholar
  26. 26.
    F. Hare, Workshop: Fluorescent techniques and membrane markers in cancerology - immunology, Montpellier, France, 14–15 December (1981).Google Scholar
  27. 27.
    K. Kinosita, S. Kawato, A. Ikegami, S. Yoshica, and Y. Orii, Biochim.Biophys.Acta 647: 7 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • W. van der Meer
    • 1
  • H. Pottel
    • 2
  • W. Herreman
    • 2
  1. 1.Physiological LaboratoryUniversity of LeidenLeidenThe Netherlands
  2. 2.Interdisciplinary Research CenterKatholieke Universiteit LeuvenKortrijkBelgium

Personalised recommendations