Control of Membrane Fusion by Divalent Cations, Phospholipid Head-Groups and Proteins

  • Nejat Düzgüneş
  • Jan Wilschut
  • Demetrios Papahadjopoulos
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)


Membrane fusion is a vital process for many cellular activities such as exocytosis, endocytosis, formation of secondary lysosomes, membrane biosynthesis and cell division. During exocytosis secretory vesicles containing proteins or neurotransmitters fuse with the plasma membrane and release their contents into the extracellular space. Such fusion events have been observed by electron-microscopy in many cell types, for example during histamine release in mast cells (Lagunoff, 1973; Lawson et al., 1977), insulin secretion in pancreatic B-cells (Orci et al., 1977), mucocyst secretion in Tetrahymena (Satir et al., 1973), chromaffin granule extrusion in the adrenal medulla (Douglas, 1968) and neurotransmitter release at the neuromuscular junction (Ceccarelli et al., 1972; Heuser et al ., 1979). The involvement of Ca2+ in exocytosis has been shown by microinjection of Ca2+ into cells (Miledi, 1973; Kanno et al., 1973), or by using Ca2+-ionophores (Foreman et al., 1973; Cochrane and Douglas, 1974). Llinas and Nicholson (1975) have shown the increase in intracellular Ca2+ concentration following electrical stimulation of the squid giant synapse, and Baker and Knight (1978) have demonstrated the dependence of catecholamine release from adrenal medullary cells on the free Ca2+-concentration. The site of action of Ca2+ or the mechanisms which control membrane fusion during excytosis are not known, however.


Divalent Cation Phosphatidyl Serine Membrane Fusion Secretory Vesicle Vesicle Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, P.F. and D.E. Knight, Calcium dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes, Nature Lond. 276: 620 (1978).PubMedCrossRefGoogle Scholar
  2. Baker, P.F., D.E. Knight and M.J. Whitaker, Calcium and the control of exocytosis, in: “Calcium-Binding Proteins: Structure and Function”, F.L. Siegel, E. Carafoli, R.H. Kretsinger, D.H. MacLennan and R.H. Wasserman, eds., Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands, p. 47 (1980).Google Scholar
  3. Bearer, E., N. Düzgüne, D.S. Friend and D. Papahadjopoulos, Calcium induced fusion of phospholipid vesicles arrested by quick-freezing: The question of lipidic particles as membrane fusion intermediate, Biochim. Biophys. Acta in press (1982).Google Scholar
  4. Bearer, E.L. and D.S. Friend, Anionic lipid domains: Correlation with functional topography in a mammalian cell membrane, Proc. Natl. Acad. Sci. USA 77: 6601 (1980).CrossRefGoogle Scholar
  5. Bentz, J., S. Nir and J. Wilschut, Mass action kinetics of vesicles aggregation and fusion, J. Coll. InterfaceSci,in press (1982a).Google Scholar
  6. Bentz, J., N. Düzgünes and S. Nir, Kinetics of divalent cation induced vesicle fusion: Correlation between binding affinity and fusogenic capacity, submitted for publication (1982b).Google Scholar
  7. Boggs, J.M., M.A. Moscarello and D. Papahadjopoulos, Phase separation of acidic and neutral phospholipids induced by human myelin basic protein, Biochemistry 16: 5420 (1977a).PubMedCrossRefGoogle Scholar
  8. Boggs, J.M., D.D. Wood, M.A. Moscarello and D. Papahadjopoulos, Lipid phase separation induced by a hydrophobic protein in phosphatidylserine-phosphatidylcholine vesicles, Biochemistry 16: 2325 (1977b).Google Scholar
  9. Ceccarelli, B., W.P. Hurlbut, and A. Mauro, Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation, J. Cell Biol. 54: 30 (1972).PubMedCrossRefGoogle Scholar
  10. Cochrane, D.E. and W.W. Douglas, Calcium-induced extrusion of secretory granules (exocytosis) in mast cells exposed to 48/80 or the ionophores A-23187 and X-537A, Proc. Natl. Acad. Sci. USA 71: 408 (1974).PubMedCrossRefGoogle Scholar
  11. Cowley, A.C., N.L. Fuller, R.P. Rand and V.A. Parsegian, Measurement of repulsive forces between charged phospholipid bilayers, Biochemistry 17: 3163 (1978).PubMedCrossRefGoogle Scholar
  12. Creutz, C.E., C.J. Pazoles and H.B. Pollard, Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules, J. Biol. Chem. 253: 2858 (1978).PubMedGoogle Scholar
  13. Creutz, C.E., C.J. Pazoles and H.B. Pollard, Self-association of synexin in the presence of calcium. Correlation with synexininduced membrane fusion and examination of the structure of synexin aggregates, J. Biol. Chem. 254: 553 (1979).PubMedGoogle Scholar
  14. Creutz, C.E., J.H. Scott, C.J. Pazoles and H.B. Pollard, Further characterization of the aggregation and fusion of chromaffin granules by synexin as a model for compound exocytosis, J. Cell. Biochem. 18: 87 (1982).PubMedCrossRefGoogle Scholar
  15. Cullis, P.R. and B. de Kruijff, The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P NMR study, Biochim. Biophys. Acta 513: 31 (1978).PubMedCrossRefGoogle Scholar
  16. Dahl, G., R. Ekerdt and M. Gratzl, Models for exocytotic membrane fusion, Symp. Soc. Exp. Biol. 33: 349 (1979).PubMedGoogle Scholar
  17. Day, E.P., J.T. Ho, R.K. Kunze and S.T. Sun, Dynamic light scattering study of calcium-induced fusion in phospholipid vesicles, Biochim. Biophys. Acta 470: 503 (1977).Google Scholar
  18. Douglas, W.W., Stimulus-secretion coupling: The concept and clues from chromaffin and other cells, Brit. J. Pharmacol. 34: 451 (1968).Google Scholar
  19. Düzgüne, N. and S. Ohki, Calcium-induced interaction of phospholipid vesicles and bilayer lipid membranes, Biochim. Biophys. Acta 467: 301 (1977).Google Scholar
  20. Düzgüne$, N. and S. Ohki, Fusion of small unilamellar liposomes with phospholipid bilayer membranes and large single-bilayer vesicles, Biochim. Biophys. Acta 640: 734 (1981).CrossRefGoogle Scholar
  21. Düzgüne, N., K. Hong and D. Papahadjopoulos, Membrane fusion: The involvement of phospholipids, proteins and calcium binding, in: “Calcium Binding Proteins: Structure and Function”, F.L. Siegel, E. Carafoli, R.H. Kretsinger, D.H. MacLennan and R.H. Wasserman, eds.,Elsevier/North-Holland Biomedical Press, Amsterdam, p. 17 (1980).Google Scholar
  22. Düzgüne, N., S. Nir, J. Wilschut, J. Bentz, C. Newton, A. Portis and D. Papahadjopoulos, Calcium and magnesium-induced fusion of mixed phosphatidylserine/phosphatidylcholine vesicles: Effect of ion binding, J. Membrane Biol. 59: 115 (1981a).CrossRefGoogle Scholar
  23. Düzgines, N., S.J. Rehfeld, K.B. Freeman, C. Newton, D.J. Eatough and D. Papahadjopoulos, Microcalorimetric analysis of divalent cation interaction with phosphatidylserine vesicles: Correlation with binding and fusion, Abstr. VIIth Int. Biophys. Cong. Mexico City, p. 226 (1981b).Google Scholar
  24. Düzgünes, N., J. Wilschut, R. Fraley, and D. Papahadjopoulos, Studies on the mechanism of membrane fusion: Role of head-group composition in calcium-and magnesium-induced fusion of mixed phospholipid vesicles, Biochim. Biophys. Acta 642: 734 (1981c).Google Scholar
  25. Düzgüne, N., K. Hong, J. Wilschut, N. Lopez and D. Papahadjopoulos, Modulation of Ca2+-induced membrane fusion by phase transitions, glycolipids and lectins, Abstr. VIIth Int. Biophys. Cong. Mexico City, p. 108 (1981d).Google Scholar
  26. Düzgüne$, N. and D. Papahadjopoulos, Ionotropic effects on phospholipid membranes: Calcium/magnesium specificity in binding, fluidity and fusion, in: “Membrane Fluidity in Biology”, R.C. Aloia, ed., Academic Press, New York, Vol. I, in press (1982).Google Scholar
  27. Düzgines, N., J. Wilschut, K. Hong, D. Hoekstra and D. Papahadjopoulos, Retention of aqueous contents during divalent cation-induced fusion of phospholipid vesicles, in preparation (1982a).Google Scholar
  28. Düzgünes, N., E. Bearer and D. Papahadjopoulos, Phospholipid vesicle fusion monitored by rapid-freezing and mixing of aqueous contents, Biophys. J. 37: 25a (1982b).Google Scholar
  29. Eisenberg, M., T. Gresalfi, T. Riccio and S. McLaughlin, Adsorption of monovalent cations to bilayer membranes containing negative phospholipids, Biochemistry 18: 5213 (1979).PubMedCrossRefGoogle Scholar
  30. Ekerdt, R., G. Dahl and M. Gratzl, Membrane fusion of secretory vesicles and liposomes, Biochim. Biophys. Acta 646: 10 (1981).Google Scholar
  31. Ekerdt, R. and D. Papahadjopoulos, Intermembrane contact affects calcium binding to phospholipid vesicles, Proc. Natl. Acad. Sci. USA 79: 2273 (1982).CrossRefGoogle Scholar
  32. Foreman, J.K., J.L. Mongar and B.D. Gomperts, Calcium ionophores and movement of calcium ions following physiologicalstimulus to a secretory process, Nature Lond. 245: 249 (1973).PubMedCrossRefGoogle Scholar
  33. Fraley, R., J. Wilschut, N. Düzgüne, C. Smith and D. Papahadjopoulos, Studies on the mechanism of membrane fusion: Role of phosphate in promoting calcium ion induced fusion of phospholipid vesicles, Biochemistry 19: 6021 (1980).PubMedCrossRefGoogle Scholar
  34. Gratzl, M. and G. Dahl, Fusion of secretory vesicles isolated from rat liver, J. Membrane Biol. 40: 343 (1978).Google Scholar
  35. Gratzl, M., C. Schudt, R. Ekerdt and G. Dahl, Fusion of isolated biological membranes, in: “Membrane Structure and Function”, E.E. Bittar, ed., Vol. 3, John Wiley New York, p. 59 (1980).Google Scholar
  36. Gresh, N. Intermolecular chelation of two serine phosphates by Cat+ and Mgt+. A theoretical structural investigation, Biochim. Biophys. Acta 597: 345 (1980).PubMedCrossRefGoogle Scholar
  37. Hammoudah, M.M., S. Nir, J. Bentz, E. Mayhew, T.P. Stewart, S.W. Hui and R.J. Kurland, Interactions of La3+ with phosphatidylserine vesicles. Binding, phase transition, leakage, 31P-NMR and fusion, Biochim. Biophys. Acta 645: 102 (1981).PubMedCrossRefGoogle Scholar
  38. Hauser, H., M.C. Phillips and M.D. Barratt, Differences in the interactions of inorganic and organic (hydrophobic) cations with phosphatidylserine membranes, Biochim. Biophys. Acta 413: 341 (1975).Google Scholar
  39. Hauser, H., I. Pascher, R.H. Pearson and S. Sundell, Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta 650: 21 (1981).PubMedGoogle Scholar
  40. Heuser, J.E., T.S. Reese, M.J. Dennis, Y.N. Jan, L.Y. Jan and L. Evans, Synaptic vesicle exocytosis captured by quick-freezing and correlated with quantal transmitter release, J. Cell Biol. 81: 275 (1979).PubMedCrossRefGoogle Scholar
  41. Hoekstra, D., Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion, Biochemistry 21: 2833 (1982a).PubMedCrossRefGoogle Scholar
  42. Hoekstra, D., Kinetics of intermixing of lipids and mixing of aqueous contents during vesicle fusion, Biochim. Biophys. Acta in press (1982b).Google Scholar
  43. Hoekstra, D., A. Yaron, A. Carmel and G. Scherphof, Fusion of phospholipid vesicles containing a trypsin-sensitive fluorogenic substrate and trypsin, FEBS Lett. 106: 176 (1979).PubMedCrossRefGoogle Scholar
  44. Holz, R.W. and C.A. Stratford, Effects of divalent ions on vesicle-vesicle fusion studied by a new luminescence assay for fusion, J. Membrane Biol. 46: 331 (1979).CrossRefGoogle Scholar
  45. Hong, K., N. Düzgünes and D. Papahadjopoulos, Role of synexin in membrane fusion. Enhancement of calcium-dependent fusion of phospholipid vesicles, J. Biol. Chem. 256: 3641 (1981).PubMedGoogle Scholar
  46. Hong, K., N. Düzgünes and D. Papahadjopoulos, Modulation of membrane fusion by calcium-binding proteins, Biophys. J. 37: 297 (1982a).PubMedCrossRefGoogle Scholar
  47. Hong, K., N. Düzgüne, R. Ekerdt and D. Papahadjopoulos, Synexin facilitates fusion of specific phospholipid vesicles at divalent cation concentrations found intracellularly, Proc. Natl. Acad. Sci. USA 79: 4642 (1982b).PubMedCrossRefGoogle Scholar
  48. Ingolia, T.D. and D.E. Koshland Jr., The role of calcium in fusion of artificial vesicles, J. Biol. Chem. 253: 3821 (1978).PubMedGoogle Scholar
  49. Jendrasiak, G.L. and J.H. Hasty, The hydration of phospholipids, Biochim. Biophys. Acta 337: 79 (1974).PubMedGoogle Scholar
  50. Jacobson, K. and D. Papahadjopoulos, Phase transitions and phase separations in phospholipid vesicles, induced by changes in temperature, pH and concentration of divalent metals, Biochemistry 14: 152 (1975).PubMedCrossRefGoogle Scholar
  51. Kanno, T., D.E. Cochrane and W.W. Douglas, Exocytosis (secretory granule extrusion) induced by injection of calcium into mast cells, Can. J. Physiol. Pharmacol. 51: 1001 (1973).PubMedCrossRefGoogle Scholar
  52. Kantor, H.L. and J. Prestegard, Fusion of fatty acid containing lecithin vesicles, Biochemistry 14: 1790 (1975).PubMedCrossRefGoogle Scholar
  53. Klausner, R.D., A.M. Kleinfeld, R.L. Hoover and M.J. Karnovsky, Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis, J. Biol. Chem. 255: 1286 (1980).PubMedGoogle Scholar
  54. Koter, B., B. de Kruijff and L.L.M. van Deenen, Calcium-induced aggregation and fusion of mixed phosphatidylcholinephosphatidic acid vesicles as studied by 31P NMR, Biochim. Biophys. Acta 514: 255 (1978).PubMedCrossRefGoogle Scholar
  55. Kurland, R.J. M. Hammoudah, S. Nir and D, Papahadjopoulos, Binding of Ca24 and Mgt+ to phosphatidylserine vesicles: Different effects on P-31 NMR shifts and relaxation rates, Biochem. Biophys. Res. Commun. 88: 927 (1979a).PubMedCrossRefGoogle Scholar
  56. Kurland, R.,+C. Newton, S. Nir and D. Papahadjopoulos, Specificity of Na binding to phosphatidylserine vesicles from a 23Na NMR relaxation rate study, Biochim. Biophys. Acta 551: 137 (1979b).Google Scholar
  57. Lagunoff, D., Membrane fusion during mast cell secretion, J. Cell Biol. 57: 252 (1973).PubMedCrossRefGoogle Scholar
  58. Lawson, D., M.C. Raff, B. Gomperts, C. Fewtrell and N.B. Gilula, Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells, J. Cell Biol. 72: 242 (1977).PubMedCrossRefGoogle Scholar
  59. Le Neveu, D.M., R.P. Rand and V.A. Parsegian, Measurement of forces between lecithin bilayers, Nature Lond. 259: 601 (1976).CrossRefGoogle Scholar
  60. Liao, M-J. and J.H. Prestegard, Fusion of phosphatidic acidphoshatidylcholine mixed lipid vesicles, Biochim. Biophys. Acta 550: 157 (1979).PubMedCrossRefGoogle Scholar
  61. Llinâs, R. and C. Nicholson, Calcium role in depolarization-secretion coupling: an aequorin study in squid giant synapse, Proc. Natl. Acad. Sci. USA 72: 187 (1975).PubMedCrossRefGoogle Scholar
  62. Maeda, T. and S.-I. Ohnishi, Membrane fusion. Transfer of phospholipid molecules between phospholipid bilayer membranes, Biochem. Biophys. Res. Commun. 60: 1509 (1974).PubMedCrossRefGoogle Scholar
  63. McIver, D.J.L., Control of mebrane fusion by interfacial water: A model for the actions of divalent cations, Physiol. Chem. Phys. 11: 289 (1979).Google Scholar
  64. McLaughlin, S., N. Mulrine, T. Grefalsi, G. Vaio and A. McLaughlin, The adsorption of divalent cations to bilayer membranes containing phosphatidylserine, J. Gen. Physiol. 77: 445 (1981).PubMedCrossRefGoogle Scholar
  65. Michell, R.H., Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415: 81 (1975).PubMedGoogle Scholar
  66. Miledi, R., Transmitter release induced by injection of calcium ions into nerve terminals, Proc. R. Soc. Lond.Ser.B. 183: 421 (1973).CrossRefGoogle Scholar
  67. Miller, C. and E. Racker, Fusion of phospholipid vesicles reconstituted with cytochrome c oxidase and mitochondrial hydrophobic protein, J. Membrane Biol. 26: 319 (1976).CrossRefGoogle Scholar
  68. Piller, D.G and G.P. Dahl, Early events in calcium-induced liposome fusion, Biochim. Biophys. Acta 689: 165 (1982).CrossRefGoogle Scholar
  69. Newton, C., W. Pangborn, S. Nir and D. Papahadjopoulos, Specificity of Ca2+ and Mgt+ binding to phosphatidylserine vesicles and resultant phase changes of bilayer membrane structure, Biochim. Biophys. Acta 506: 281 (1978).PubMedCrossRefGoogle Scholar
  70. Nir, S., Van der Waals interactions between surfaces of biological interest, Prog. Surface Sci. 8: 1 (1977).CrossRefGoogle Scholar
  71. Nir, S. and J. Bentz, On the forces between phospholipid bilayers, J. Colloid Interface Sci. 65: 399 (1978).CrossRefGoogle Scholar
  72. Nir, S., C. Newton and D. Papahadjopoulos, Binding of cations to phosphatidylserine vesicles, Bioelectrochem. Bioenerg. 5: 116 (1978).CrossRefGoogle Scholar
  73. Nir, S., J. Bentz and J. Wilschut, Mass action kinetics of phosphatidylserine fusion as monitored by coalescence of internal vesicle volumes, Biochemistry 19: 6030 (1980).PubMedCrossRefGoogle Scholar
  74. Nir, S., J. Bentz and N. Düzgüne, Two modes of reversible vesicle aggregation: Particle size and the DLVO theory, J. Coll. Interface Sci. 84: 266 (1981).CrossRefGoogle Scholar
  75. Nir, S., J. Bentz, J. Wilschut and N. Düzgüne, Aggregation and fusion of phospholipid vesicles, Prog. Surface Sci. in press (1982a).Google Scholar
  76. Nir, S., J. Wilschut and J. Bentz, The rate of fusion of phospholipid vesicles and the role of bilayer curvature, Biochim. Biophys. Acta 688: 275 (1982b).Google Scholar
  77. Nir, S., N. Düzgünes and J. Bentz, Binding of monovalent cations to phosphatidylserine and modulation of calcium-and magnesium-induced vesicle fusion, submitted for publication (1982c).Google Scholar
  78. Ohki, S., A mechanism of divalent ion-induced phosphatidylserine membrane fusion, Biochim. Biophys. Acta 689: 1 (1982).PubMedCrossRefGoogle Scholar
  79. Ohki, S. and N. Düzgüne, Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes, Biochim. Biophys. Acta 552: 438 (1979).PubMedCrossRefGoogle Scholar
  80. Ohki, S. and R. Kurland, Surface potential of phosphatidylserine monolayers. II. Divalent and monovalent ion binding, Biochim. Biophys. Acta 645: 170 (1981).PubMedCrossRefGoogle Scholar
  81. Ohki, S. and R. Sauvé, Surface potential of phosphatidylserine monolayers. I. Divalent ion binding effect, Biochim. Biophys. Acta 511: 377 (1978).Google Scholar
  82. Ohki, S., N. Düzgünes and K. Leonards, Phospholipid vesicle aggregation: Effect of monovalent and divalent ions, Biochemistry 21: 2127 (1982).PubMedCrossRefGoogle Scholar
  83. Orci, L., A. Perellet and D.S. Friend, Freeze-fracture of membrane fusions during exocytosis in pancreatic B-cells, J. Cell Biol. 75: 23 (1977).PubMedCrossRefGoogle Scholar
  84. Palade, G., Intercellular aspects of the process of protein synthesis, Science 189: 347 (1975).PubMedCrossRefGoogle Scholar
  85. Papahadjopoulos, D. and A.D. Bangham, Biophysical properties of phospholipids. II. Permeability of phosphatidylserine liquid crystals to univalent ions, Biochim. Biophys. Acta 126: 185 (1966).PubMedCrossRefGoogle Scholar
  86. Papahadjopoulos, D. and S. Ohki, Stability of asymmetric phospholipid bilayers, Science 164: 1075 (1969).PubMedCrossRefGoogle Scholar
  87. Papahadjopoulos, D., G. Poste, B.E. Schaeffer and W.J. Vail, Membrane fusion and molecular segregation in phospholipid vesicles, Biochim. Biophys. Acta 352: 10 (1974).PubMedCrossRefGoogle Scholar
  88. Papahadjopoulos, D., W.J. Vail, K. Jacobson and G. Poste, Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles, Biochim. Biophys. Acta 394: 483 (1975).PubMedCrossRefGoogle Scholar
  89. Papahadjopoulos, D., W.J. Vail, W.A. Pangborn and G. Poste, Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium and other divalent metals, Biochim. Biophys. Acta 448: 265 (1976a).PubMedCrossRefGoogle Scholar
  90. Papahadjopoulos, D., S. Hui, W.J. Vail and G. Poste, Studies on membrane fusion. I. Interactions of pure phospholipid membranes and the effect of myristic acid, lysolecithin, proteins and DMSO, Biochim. Biophys. Acta 448: 245 (1976b).CrossRefGoogle Scholar
  91. Papahadjopoulos, D., W.J. Vail, C. Newton, S. Nir, K. Jacobson, G. Poste and R. Lazo, Studies on membrane fusion. III. The role of calcium-induced phase changes, Biochim. Biophys. Acta 465: 579 (1977).PubMedCrossRefGoogle Scholar
  92. Papahadjopoulos, D., A. Portis Jr., and W. Pangborn, Calcium-induced lipid phase transitions and membrane fusion, Ann. N.Y. Acad. Sci. 308: 50 (1978).Google Scholar
  93. Portis, A., C. Newton, W. Pangborn and D. Papahadjopoulos, Studies on the mechanism of membrane fusion: Evidence for an inter-membrane Cat+ phospholipid complex, synergism with Mg2+, and inhibition by spectrin, Biochemistry 18: 780 (1979).PubMedCrossRefGoogle Scholar
  94. Rand, R.P., Interacting phospholipid bilayers: Measured forces and induced structural changes, Ann. Rev. Biophys. Bioeng. 10: 277 (1981).CrossRefGoogle Scholar
  95. Rehfeld, S.J., N. Düzgünes, C. Newton, D. Papahadjopoulos and D.J. Eatough, The exothermic reaction of calcium with unilamellar phosphatidylserine vesicles: Titration microcalorimetry, FEBS Lett. 123: 249 (1981).PubMedCrossRefGoogle Scholar
  96. Reiss-Husson, F., Structure des phases liquides-crystallines de différents phospholipides, monoglycerides, sphingolipides, anhydrides ou en présence d’eau, J. Mol. Biol. 25: 363 (1967)PubMedCrossRefGoogle Scholar
  97. Satir, B., C. Schooley and P. Satir, Membrane fusion in a model system. Mucocyst secretion in Tetrahymena,J. Cell Biol. 56:153 (1973).Google Scholar
  98. Schullery, S.E., C.F. Schmidt, P. Feigner, T.W. Tillack and T.E. Thompson, Fusion of dipalmitoylphosphatidylcholine vesicles, Biochemistry 19: 3919 (1980).PubMedCrossRefGoogle Scholar
  99. Stewart, T.P., S.W. Hui, A.R. Portis and D. Papahadjopoulos, Complex phase mixing of phosphatidylcholine and phosphatidylserine in multilamellar membrane vesicles, Biochim. Biophys. Acta 556: 1 (1979).PubMedCrossRefGoogle Scholar
  100. Struck, D.K., D. Hoekstra and R.E. Pagano, Use of resonance energy transfer to monitor membrane fusion, Biochemistry 20: 4093 (1981).PubMedCrossRefGoogle Scholar
  101. Sundler, R. and D. Papahadjopoulos, Control of membrane fusion by phospholipid head groups: I. Phoshatidate/phosphatidylinositol specificity, Biochim. Biophys. Acta 649: 743 (1981).PubMedCrossRefGoogle Scholar
  102. Sundler, R., N. Düzgünes and D. Papahadjopoulos, Control of membrane fusion by phospholipid head-groups. II. The role of phosphatidylethanolamine in mixtures with phosphatidate and phosphatidylinositol, Biochim. Biophys. Acta 649: 751 (1981).PubMedCrossRefGoogle Scholar
  103. Sun, S.T., E.P. Day and J.T. Ho, Temperature dependence of calciuminduced fusion of sonicated phosphatidylserine vesicles, Proc. Natl. Acad. Sci. USA 75: 4325 (1978).PubMedCrossRefGoogle Scholar
  104. Suurkuusk, J., B.R. Lentz, Y. Barenholz, R.L. Biltonen and T.E. Thompson, A calorimetric and fluorescent probe study of the gel-liquid cyrstalline phase transition in small, single-lamellar dipalmitoyl phosphatidylcholine vesicles, Biochemistry 15: 1393 (1976).PubMedCrossRefGoogle Scholar
  105. Vanderwerf, P. and E.F. Ullman, Monitoring of phospholipid vesicle fusion by fluorescence energy transfer between membrane-bound dye labels, Biochim. Biophys. Acta 596: 302 (1980).PubMedCrossRefGoogle Scholar
  106. Verkleij, A.J., C. Mombers, W.J. Gerritsen, L. Leunissen-Bijvelt and P.R. Cullis, Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze-fracturing, Biochim. Biophys. Acta 555: 358 (1979).PubMedCrossRefGoogle Scholar
  107. Verkleij, A.J., C.J.A. van Echteld, W.J. Gerritsen, P.R. Cullis and B. de Kruijff, The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal Hui transitions, Biochim. Biophys. Acta 600: 620 (1980).PubMedCrossRefGoogle Scholar
  108. Verwey, E.J.A. and J.Th.G. Overbeek, “Theory of the Stability of Lyophobic Colloids”, Elsevier, Amsterdam and New York (1949).Google Scholar
  109. Weinstein, J.N., S. Yoshikami, P. Henkart, R. Blumenthal and W.A. Hagins, Liposome-cell interaction: Transfer and intracellular release of a trapped fluorescent marker, Science, 195: 489 (1977).PubMedCrossRefGoogle Scholar
  110. Wilschut, J. and D. Papahadjopoulos, Cat+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents, Nature Lond. 281: 690 (1979).PubMedCrossRefGoogle Scholar
  111. Wilschut, J., N. Düzgüne, R. Fraley and D. Papahadjopoulos, Studies on the mechanism of membrane fusion: Kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents, Biochemistry 19: 6011 (1980).PubMedCrossRefGoogle Scholar
  112. Wilschut, J., N. Düzgüne and D. Papahadjopoulos, Calcium/ magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature, Biochemistry 20: 3126 (1981).PubMedCrossRefGoogle Scholar
  113. Wilschut, J., N. Düzgünep and D. Papahadjopoulos, Studies on the mechanism of membrane fusion: Temperature dependence of divalent cation-induced fusion of phosphatidylserine vesicles and the role of bilayer curvature, in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Nejat Düzgüneş
    • 1
    • 2
    • 4
  • Jan Wilschut
    • 5
  • Demetrios Papahadjopoulos
    • 1
    • 3
  1. 1.Cancer Research InstituteUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of AnesthesiaUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of PharmacologyUniversity of CaliforniaSan FranciscoUSA
  4. 4.Bruce Lyon Memorial Research LaboratoryChildren’s Hospital Medical CenterOaklandUSA
  5. 5.Laboratory of Physiological ChemistryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations