Membrane Fusion and Lipid Polymorphism

  • A. J. Verkleij
  • R. Van Venetië
  • J. Leunissen-Bijvelt
  • B. de Kruijff
  • M. Hope
  • P. R. Cullis
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)


Membrane fusion is an extremely important phenomenon in biology. During this process two membranes, which can be two different membranes or two sites of one membrane, come in close contact, join and subsequently fuse, resulting in an intermixing of membrane lipids and proteins of the two membranes. Moreover, aqueous compartments, which were separated before the fusion, will intermix (see Fig. 1). If fusion is stopped at the stage of joining and the two membranes stay connected one may call it arrested fusion.


Phosphatidic Acid Membrane Fusion Equimolar Mixture Lamellar Phase Lipidic Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chandler, D.E. and Heuser, J.E., 1980, Arrest of membrane fusion events in mast cells by quick freezing, J. Cell Biol., 86: 666.PubMedCrossRefGoogle Scholar
  2. Cullis, P.R. and Hope, M.M., 1978, Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion, Nature, 271: 672.PubMedCrossRefGoogle Scholar
  3. Cullis, P.R. and De Kruijff, B., 1978, Lipid polymorphism and the functional role of lipids in biological membranes, Biochim. Biophys. Acta, 559: 399.Google Scholar
  4. Cullis, P.R., Verkleij, A.J. and Ververgaert, P.H.J.Th., 1978a, Poly- morphic phase behavior of cardiolipin as detected by 31P NMRGoogle Scholar
  5. and freeze-fracture techniques. Effects of calcium, dibucaine and chlorpromazine, Biochim. Biophys. Acta, 513: 11.Google Scholar
  6. Cullis, P.R., Van Dijck, P.W.M., De Kruijff, B. and De Gier, J.,1978, Effects of cholesterol on the properties of equimolar mixture of synthetic phosphatidylethanolamine and phosphatidylcholine. A 3IP NMR and differential scanning calorimetry study, Biochim. Biophys. Acta, 513: 21.Google Scholar
  7. Deamer, D.W., Leonard, R., Tardieu, A. and Branton, D., 1970, Lamel-lar and hexagonal lipid phases visualized by freeze etching, Biochim. Biophys. Acta, 219: 47.Google Scholar
  8. Echteld, C.J.A. van, Van Stigt, R., De Kruijff, B., Leunissen-Bijvelt, J., Verkleij, A.J. and De Gier, J., 1981, Gramicidin promotes formation of the hexagonal II phase in aqueous dispersions of PE and PC, Biochim. Biophys. Acta, 648: 287.Google Scholar
  9. Fontell, K., 1981, Liquid crystallinity in lipid water systems, Mol. Cryst. Liq. Cryst., 63: 59.Google Scholar
  10. Hui, S. and Boni, L.L., 1982, Lipidic particles and cubic phase lipids, Nature, 296: 175.PubMedCrossRefGoogle Scholar
  11. Hui, S. and Stewart, T., 1981, Lipidic particles are intermembrane attachment sites, Nature, 290: 427.PubMedCrossRefGoogle Scholar
  12. Kruijff, B. de, Verkleij, A.J., Van Echteld, C.J.A., Gerritsen, W.J., Mombers, C., Noordam, P.C. and De Gier, J., 1979, The occurrence of lipidic particles in lipid bilayers as seen by 31P NMR and freeze-fracture electron microscopy, Biochim. Biophys. Acta, 555: 200.Google Scholar
  13. Lau, A.L.Y. and Chan, S.J., 1975, Alamethicin-mediated fusion of lecithin vesicles, Proc. Natl. Acad. Sci. USA, 72: 2170. Lucy, L.A., 1970, The fusion of biological membranes, Nature, 227: 814.Google Scholar
  14. Luzzati, V. and Reiss-Husson, F., 1962, The structure of the liquid crystalline phases of lipid-water systems, J. Cell Biol., 12: 207.PubMedCrossRefGoogle Scholar
  15. Luzzati, V. and Tardieu, A., 1974, Lipid phases: structure and structural transitions, Ann. Rev. Phys. Chem., 25: 79.Google Scholar
  16. Luzzati, V., Gulik-Krzywicki, T. and Tardieu, A., 1968, Polymorphism of lecithins, Nature, 218: 1031.PubMedCrossRefGoogle Scholar
  17. Nayar, R., Hope, M.J. and Cullis, P.R., 1982, Phospholipids as adjuncts for calcium ion stimulated release of chromaffin granules contents: implications for mechanism of exocytosis, Biochemistry, 21: 4583.PubMedCrossRefGoogle Scholar
  18. Papahadjopoulos, D., Portis, A. and Pangborn, W., 1978, Calcium-induced lipid phase transitions and membrane fusion, Ann. New York Acad. Sci., 308: 50.Google Scholar
  19. Papahadjopoulos, D., Vail, W.J., Pangborn, W. and Poste, G., 1976, Studies on membrane fusion. -II. Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals, Biochim. Biophys. Acta, 448: 265.Google Scholar
  20. Pinto da Silva, P. and Nogueira, M.L.J., 1977, Membrane fusion during secretion. A hypothesis based on EM observation of Phytophora palmivora zoospores during encystment, J. Cell Biol., 73: 166.Google Scholar
  21. Rand, R.P. and Sengupta, S., 1972, Cardiolipin forms hexagonal structures with divalent cations, Biochim. Biophys. Acta, 255: 484.Google Scholar
  22. Rand, R.P., Tinker, D.O. and Fast, F.G., 1971, Polymorphism of phos-phatidylethanolamines from two natural sources, Chem. Phys. Lipids, 6: 333.Google Scholar
  23. Reiss-Husson, F., 1967, Structures des phases liquide-cristallines de differents phospholipides, monoglycerides, sphingolipides, anhydres ou en presence d’eau, J. Mol. Biol., 25: 363.Google Scholar
  24. Rothman, J.E. and Lenard, J., 1977, Membrane asymmetry: the nature of membrane asymmetry provides clues to the puzzle of how mem-branes are assembled, Science, 195: 743.PubMedCrossRefGoogle Scholar
  25. Schramm, M., Oates, J., Papahadjopoulos, D. and Loyter, A., 1982, Fusion and implantation in biological membranes, Trends in Pharmacol. Sci., 3: 221.Google Scholar
  26. Sen, A., Williams, W.P., Brain, A.P.R., Dickens, M.J. and Quinn,P.J., 1981, Formation of inverted micelles in dispersions of mixed galactolipids, Nature, 293: 488.PubMedCrossRefGoogle Scholar
  27. Shipley, G.G., 1973, Recent X-ray diffraction studies of biological membranes and membrane components, in: “Biological membranes,” Chapman, D. and Wallace, D.F.H., eds., Academic Press, London and New York, Vol. 2, pp. 1–89.Google Scholar
  28. Venetië, R. van and Verkleij, A.J., 1981, Analysis of the hexagonal II phase and its relation to lipidic particles and the lamellar phase. A freeze-fracture study, Biochim. Biophys. Acta, 645: 262.Google Scholar
  29. Verkleij, A.J. and De Gier, J., 1981, Freeze-fracture studies on aqueous dispersions of membrane lipids, in: “Liposomes: From Physical Structure to Therapeutic Applications”, Elsevier, Amsterdam, Vol. 4, pp. 83–103.Google Scholar
  30. Verkleij, A.J., Van Echteld, C.J.A., Gerritsen, W.J., Cullis, P.R. and De Kruijff, B., 1980, The lipidic particle as an interme-diate structure in membrane fusion processes and bilayer to hexagonal HII transitions, Biochim. Biophys. Acta, 600: 620.Google Scholar
  31. Verkleij, A.J., De Maagd, R., Leunissen-Bijvelt, J. and De Kruijff, B., 1982, Divalent cations and chlorpromazine can induce nonbilayer structures in phosphatidic acid containing model membranes, Biochim. Biophys. Acta, 684: 255.Google Scholar
  32. Verkleij, A.J., Mombers, C., Gerritsen, W.J., Leunissen-Bijvelt, J. and Cullis, P.R., 1979, Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing, Biochim. Biophys. Acta, 555: 358.Google Scholar
  33. Verkleij, A.J., Zwaal, R.F.A., Roelofsen, B., Comfurius, P., Kastelijn, P. and Van Deenen, L.L.M., 1973, The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipase and freeze-etch electron microscopy, Biochim. Biophys. Acta, 323: 178.Google Scholar
  34. Wieslander, A., Ulmius, J., Lindblom, G. and Fontell, K., 1978, Water binding and phase structures for different Acholeplasma laidlawii membrane lipids studied by deuteron NMR and X-ray diffraction, Biochim. Biophys. Acta, 512: 241.Google Scholar
  35. Wilschut, J., Holsappel, M. and Jansen, R., 1982, Ca2+-induced fusion of cardiolipin/phosphatidylcholine vesicles monitored by mixing of aqueous contents, Biochim. Biophys. Acta, 690: 297.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • A. J. Verkleij
    • 1
  • R. Van Venetië
    • 2
  • J. Leunissen-Bijvelt
    • 2
  • B. de Kruijff
    • 1
  • M. Hope
    • 3
  • P. R. Cullis
    • 3
  1. 1.Institute of Molecular BiologyState University of UtrechtUtrechtThe Netherlands
  2. 2.Department of Molecular Cell BiologyState University of UtrechtUtrechtThe Netherlands
  3. 3.Department of BiochemistryUniversity of BritishColumbiaCanada

Personalised recommendations