Water Organization in Reversed Micelles

  • C. A. Boicelli
  • F. Conti
  • M. Giomini
  • A. M. Giuliani
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)


Biological membranes control cell life, modulating transport and exchange processes between the endocellular and the extracellular compartments. In other words, the metabolism of the cells and their relationships with the environment are strongly dependent on membrane function. Membrane activity, in turn, is influenced by the physical and chemical properties of the inner and outer compartments.


Nuclear Magnetic Resonance Reverse Micelle Water Pool Longitudinal Relaxation Time Nuclear Magnetic Resonance Relaxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. A. Boicelli, F. Conti, M. Giomini, and A. M. Giuliani, Interactions of small molecules with phospholipids in inverted micelles, Chem.Phys.Lett., 89: 490 (1982).CrossRefGoogle Scholar
  2. 2.
    A. G. Lee, N. J. M. Birdsall, Y. K. Levine, and J. C. Metcalfe, High-resolution proton relaxation studies of lecithins, Biochim.Biophys.Acta, 255: 43 (1975).Google Scholar
  3. 3.
    G. Govil and R. V. Hosur, Organization of phospholipids in biological membranes, Int.J.Quant.Chem., 16: 19 (1979).CrossRefGoogle Scholar
  4. 4.
    D. L. Yeagle, Phospholipid headgroup behavior in biological • assemblies, Accounts Chem.Res., 11: 321 (1978).CrossRefGoogle Scholar
  5. 5.
    T. Axenrod, in “Physical Methods on Biological Membranes and their Model Systems”, Plenum Publ. Co., in press (1984).Google Scholar
  6. 6.
    A. Abragam, “Principles of Nuclear Magnetism”, Clarendon Press, Oxford, chapter V III (1961).Google Scholar
  7. 7a.
    K. J. Packer, Nuclear spin relaxation studies of molecules adsorbed on surfacesGoogle Scholar
  8. b.
    E. L. Mackor and C. MacLean, Relaxation processes in systems of two non-identical spinsGoogle Scholar
  9. c.
    H. G. Hertz, Microdynamic behavior of liquids as studied by NMR relaxation times, in: “Progress in Nuclear Magnetic Resonance Spectroscopy”, Pergamon Press, Oxford (1967).Google Scholar
  10. 8.
    F. Noak, Nuclear magnetic relaxation spectroscopy, in: “NMR Basic Principles and Progress”, vol. 3, Springer-Verlag, Berlin (1971).Google Scholar
  11. 9.
    T. L. James, “Nuclear Magnetic Resonance in Biochemistry”, Academic Press, New York (1975).Google Scholar
  12. 10.
    NMR basic principles and progress, vol.19, “NMR in Medicine”, R. Damadian, ed., Springer-Verlag, Berlin (1981).Google Scholar
  13. 11.
    J. R. Zimmermann and W. E. Brittin, Nuclear magnetic resonance studies in multiple-phase systems: lifetime of a water molecule in an adsorbing phase on silica gel, J.Phys.Chem., 61: 1328 (1957).CrossRefGoogle Scholar
  14. 12.
    E. D. Finch and L. D. Homer, Proton NMR relaxation measurements in frog muscle, Biophys.J., 14: 907 (1974).PubMedCrossRefGoogle Scholar
  15. 13.
    K. Hallenga and S. H. Koenig, Protein rotational relaxation as studied by solvent proton and deuteron magnetic relaxation, Biochem., 15: 4255 (1976).CrossRefGoogle Scholar
  16. 14.
    A. De Ambrosis, S. Aldrovandi, G. Bonera, and M. Villa, The NMR response of heterogeneous systems: anisotropy and low-dimensionality effects, in: “Magnetic Resonance in Colloid Interface Science”, NATO ASI, 61 (1980).Google Scholar
  17. 15.
    A. Kalk and H. J. C. Berendsen, Proton magnetic relaxation and spin-diffusion in proteins, J.Magn.Res., 24: 343 (1976).CrossRefGoogle Scholar
  18. 16.
    B. M. Fung and T. W. McGaughy, Cross-relaxation in hydrated collagen, J.Magn.Res., 39: 413 (1980).CrossRefGoogle Scholar
  19. 17.
    R. Freeman and H. D. W. Hill, High-resolution studies of nuclear spin-lattice relaxation, J.Chem.Phys., 51: 3140 (1969).CrossRefGoogle Scholar
  20. 18.
    R. Freeman and H. D. W. Hill, Fourier transform study of NMR spin-lattice relaxation by “Progressive Saturation”, J.Chem. Phys., 54: 3367 (1971).CrossRefGoogle Scholar
  21. 19a.
    J. L. Markley, W. J. Horsley, and M. P. Klein, Spin-lattice relaxation measurements in slowly relaxing complex spectra, J.Chem.Phys., 55: 3604 (1971).CrossRefGoogle Scholar
  22. b. G. G. McDonald and J. S. Leigh, Jr., New method for measuring longitudinal relaxation times, J.Magn.Res., 9: 358 (1973).CrossRefGoogle Scholar
  23. 20.
    U. P. Fringeli and Hs. H. Gunthard, Infrared membrane spectroscopy, in: “Membrane Spectroscopy”, E. Grel, ed., Springer-Verlag, Berlin (1981).Google Scholar
  24. 21.
    B. E. Conway, “Ionic Hydration in Chemistry and Biophysics”, Elsevier Publ. Co., Amsterdam, chapter V II (1981).Google Scholar
  25. 22.
    D. Eisenberg and W. Kauzmann, “The Structure and Properties of Water”, Clarendon Press, Oxford, chapter I V (1969).Google Scholar
  26. 23.
    B. M. Fung and J. L. McAdams, The interaction between water and the polar head in inverted phosphatidylcholine micelles. A 2H and 1P relaxation study, Biochim.Biophys.Acta, 451: 313 (1976).PubMedCrossRefGoogle Scholar
  27. 24.
    G. J. Béné, Foundations and preliminary results on medical diagnosis by nuclear magnetism, Adv.Electron.Electron.Phys., 49: 85 (1979).CrossRefGoogle Scholar
  28. 25.
    C. A. Boicelli, M. Giomini, and A. M. Giuliani, Effect of small solutes on the water populations in inverted micelles, Spectrochim.Acta, 37A: 559 (1981).CrossRefGoogle Scholar
  29. 26.
    E. G. Finer, Interpretation of deuteron magnetic resonance spectroscopic studies of the hydration of macromolecules, J.Chem.Soc.,Faraday Trans. II 69: 1590 (1973).Google Scholar
  30. 27.
    IV ESF Workshop on polymer sciences, “Biological and Technological Relevance of Reverse Micelles and other Amphiphilic Structures in Apolar Media”, Rigi-Kaltbad, Sept.29-Oct. 2 (1982).Google Scholar
  31. 28.
    D. P. Hollis, Phosphorus NMR of cells, tissues and organelles, in: “Biological Magnetic Resonance”, vol. 2, L. J. Berliner and J. Reuben, eds., Plenum Press, New York (1980).Google Scholar
  32. 29.
    D. G. Gadian, G. K. Radda, R. E. Richards, and P. J. Seeley, 31P NMR in living tissue: the road from a promising to an important tool in biology, in: “Biological Applications of Magnetic Resonance”, R. Shulman, ed., Academic Press, New York (1979).Google Scholar
  33. 30.
    H. H. Mantsch, H. Saito, and I. C. P. Smith, Deuterium magnetic resonance, applications in chemistry, physics and biology, in: “Progress in NMR Spectroscopy”, J. W. Emsley, J. Feeney, and L. H. Sutcliffe, eds., Pergamon Press, Oxford, vol. 11 (1977).Google Scholar
  34. 31.
    E. G. Finer and A. Darke, Phospholipid hydration studied by deuteron magnetic resonance spectroscopy, Chem.Phys.Lipids, 12: 1 (1974).PubMedCrossRefGoogle Scholar
  35. 32.
    G. Klose and F. Stelzner, NMR investigations of the interaction of water with lecithin in benzene solutions, Biochim.Biophys. Acta, 363: 1 (1974).PubMedCrossRefGoogle Scholar
  36. 33.
    P. J. Andree, The effect of cross-relaxation on the longitudinal relaxation times of small ligands binding to macromolecules, J.Magn.Res., 29: 419 (1978).CrossRefGoogle Scholar
  37. 34.
    H. T. Edzes and E. T. Samulski, The measurement of cross-relaxation effects in the proton NMR spin-lattice relaxation of water in biological systems: hydrated collagen and muscle, J.Magn.Res., 31: 207 (1978).CrossRefGoogle Scholar
  38. 35.
    B. M. Fong, Proton and deuteron relaxation of muscle water over wide ranges of resonance frequencies, Biophys.J., 18: 235 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • C. A. Boicelli
    • 1
    • 2
    • 3
  • F. Conti
    • 1
    • 2
    • 3
  • M. Giomini
    • 1
    • 2
    • 3
  • A. M. Giuliani
    • 1
    • 2
    • 3
  1. 1.CNRUniversity of BolognaItaly
  2. 2.University of RomeItaly
  3. 3.CNRRomeItaly

Personalised recommendations