Recent Developments in Labeling by Catalytic Exchange—The Application of π-Complex Theory to the Prediction of Isotopic Hydrogen Orientation in Molecules Labeled by Heterogeneous Techniques

  • G. E. Calf
  • J. L. Garnett
  • W. A. Sollich-Baumgartner


The value of labeling organic molecules with deuterium and/or tritium in a one-step procedure is now well established for structure determination by mass spectrometry [1], spin decoupling in nuclear magnetic resonance spectroscopy [2], evaluation of coupling constants in electron-spin resonance spectroscopy [3] and in general reaction mechanism studies [4]. Besides specific synthetic chemical methods [5, 8], the most useful general labeling procedures are gas irradiation [7] for tritium or catalytic exchange with isotopic water [8, 9] for deuterium or tritium. The advantages of heterogeneous exchange reactions in the presence of transition metals such as platinum have been critically evaluated when compared with the radiation-induced procedures [lo, 11]. A π-complex adsorption mechanism has been proposed to account for the reactivity of molecules in such heterogeneous exchange systems[12,13].


Ionization Potential Lone Pair Raney Nickel Platinum Oxide Isotopic Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McLafferty, F.W., Mass Spectrometry of Organic Ions, Academic Press, London. 1963.Google Scholar
  2. 2.
    Garnett, J. L., Henderson, L. J., Sollich, W.A., and Tiers, G. V. D., Tetrahedron Letters 516 (1961).Google Scholar
  3. 3.
    Aylward, G. H., Garnett, J. L., and Sharp, H., Chem. Comm. 137 (1966).Google Scholar
  4. 4.
    Burr, J.G., Tritium in the Physical and Biological Sciences, Vol. I, IAEA, Vienna, 1962.Google Scholar
  5. 5.
    Shatenshtein, A. I., Isotopic Exchange and the Replacement of Hydrogen in Organic Compounds, Plenum Press, New York, 1962.CrossRefGoogle Scholar
  6. 6.
    Rothchild, S., Advances in Tracer Methodology, Vol. I, Plenum Press, New York, 1963.Google Scholar
  7. 7.
    Wilzbach, K.E., J. Am. Chem. Soc. 79: 1013 (1957).CrossRefGoogle Scholar
  8. 8.
    Garnett, J.L., Henderson, L. J., and Sollich, W.A., Tritium in the Physical and Biological Sciences, Vol. II, IAEA, Vienna, 1962.Google Scholar
  9. 9.
    Yavorsky, P.M., and Gorin, E., J. Am. Chem. Soc. 84: 1071 (1962).CrossRefGoogle Scholar
  10. 10.
    Garnett, J.L., Nucleonics 20: 86 (1962).Google Scholar
  11. 11.
    Long, M. A., Odell, A.L., and Thorp, J.M., Radiochim. Acta 1: 174 (1963).Google Scholar
  12. 12.
    Garnett, J.L., and Sollich, W. A., J. Catalysis 2: 350 (1963).CrossRefGoogle Scholar
  13. 13.
    Garnett, J. L., and Sollich-Baumgartner, W.A., J. Phys. Chem. 69: 1850 (1965).CrossRefGoogle Scholar
  14. 14.
    Garnett, J. L., and Sollich, W. A., Australian J. Chem. 18: 1003 (1965).CrossRefGoogle Scholar
  15. 15.
    Calf, G.E., and Garnett, J.L., J. Phys. Chem. 68: 3887 (1964).CrossRefGoogle Scholar
  16. 16.
    Garnett, J.L., and Sollich, W.A., Australian J. Chem. 18: 993 (1965).CrossRefGoogle Scholar
  17. 17.
    Fisher, B.D., and Garnett, J.L., Australian J. Chem. 19: 2299 (1966).CrossRefGoogle Scholar
  18. 18.
    Garnett, J. L., and Sollich, W. A., J. Catalysis 2: 339 (1963).CrossRefGoogle Scholar
  19. 19.
    Garnett, J.L., and Sollich, W.A., Australian J. Chem. 14: 441 (1961).CrossRefGoogle Scholar
  20. 20.
    Coulson, C.A., J. Chem. Soc. 1435 (1955).Google Scholar
  21. 21.
    Mulliken, R.S., J. Am. Chem. Soc. 74: 811 (1952).CrossRefGoogle Scholar
  22. 22.
    Garnett, J.L., and Sollich-Baumgartner, W.A., Advan. Catalysis 16: 95 (1966).CrossRefGoogle Scholar
  23. 23.
    Melander, L., Transition State, Spec. Publ. Chem. Soc. (London) 16 (1962).Google Scholar
  24. 24.
    Watanabe, K., Nakayoma, T., and Mottl, J., A Final Report on Ionization Potentials of Molecules by a Photoionization Method. Contrib. No. DA-04-200ORD.480 and 737, University of Hawaii, Honolulu, 1959.Google Scholar
  25. 25.
    Matsen, F. A., J. Chem. Phys. 24: 602 (1956).CrossRefGoogle Scholar
  26. 26.
    Crawford, E., and Kemball, C., Trans. Faraday Soc. 58: 2452 (1962).CrossRefGoogle Scholar
  27. 27.
    Macdonald, C.G., and Shannon, J.S., Australian J. Chem. 18: 1009 (1965).CrossRefGoogle Scholar
  28. 28.
    Calf, G.E., and Garnett, J.L., unpublished data.Google Scholar
  29. 29.
    Garnett, J. L., and Sollich, W. A., Nature 201: 902 (1964).CrossRefGoogle Scholar
  30. 30.
    Lauer, W.M., and Errede, L. A., J. Am. Chem. Soc. 76: 5162 (1954).CrossRefGoogle Scholar
  31. 31.
    Macdonald, C.G., and Shannon, J.S., Tetrahedron Letters 3351 (1964).Google Scholar
  32. 32.
    Garnett, J.L., and Sollich, W.A., Australian J. Chem. 15: 56 (1964).CrossRefGoogle Scholar
  33. 33.
    Ashby, R. A., and Garnett, J. L., Australian J. Chem. 16: 549 (1963).CrossRefGoogle Scholar
  34. 34.
    Bloch, K., and Rittenberg, D., J. Biol. Chem. 149: 505 (1943).Google Scholar
  35. 35.
    Fukushima, D. K., and Gallagher, T. F., J. Biol. Chem. 198: 861 (1952).Google Scholar
  36. 36.
    Eidinoff, M.L., and Knoll, J.E., J. Am. Chem. Soc. 75: 1992 (1953).Google Scholar

Copyright information

© New England Nuclear Corporation 1968

Authors and Affiliations

  • G. E. Calf
    • 1
  • J. L. Garnett
    • 1
  • W. A. Sollich-Baumgartner
    • 1
  1. 1.Department of Physical Chemistry The UniversityKensingtonAustralia

Personalised recommendations