The Effects of Aliphatic Alcohols on the Biophysical and Biochemical Correlates of Membrane Function

  • Walter A. Hunt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 56)


The mechanism by which aliphatic alcohols produce depression of the central nervous system (CNS) is not yet understood. Any proposed mechanism should conform to at least the following criteria: (a) biophysical and biochemical changes induced by alcohols have to occur at the sublethal concentrations found in vivo after alcohol ingestion and in physiologically important magnitudes to be considered relevant; (b) the time course of these changes must correlate with the appearance and disappearance of CNS depression and with changes in blood (brain) alcohol levels, since the time course of depression corresponds with these changes; (c) the increasing potency of alcohols with increasing lipid solubility must be explained; and (d) the changes involved must be relevant to mechanisms responsible for neuroexcitability.


Electron Spin Resonance Rest Membrane Potential Aliphatic Alcohol Membrane Function Squid Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grenell, R.G.: Effects of alcohol on the neuron. In: The Biology of Alcoholism, Vol. 2, B. Kissin and H. Begleiter (eds.), pp. 1 - 19, Plenum Press, New York, 1972.Google Scholar
  2. 1a.
    Meyer, H.H. and Gottlieb, R.: Experimental pharmacology as a basis for therapeutics, 2nd ed., V.E. Henderson (transl.) p. 121, J.B. Lippincott Co., Philadelphia, 1926.Google Scholar
  3. 2.
    Meyer, K.H.: Contributions to the theory of narcosis. Trans. Faraday Soc., 33: 1062 - 1968, 1937.CrossRefGoogle Scholar
  4. 3.
    Roth, S. and Seeman, P.: The membrane concentrations of neutral and positive anesthetics (alcohol, chlorpromazine, morphine) fit the Meyer-Overton rule of anesthesia; negative narcotics do not. Biochim. Biophys. Acta, 255: 207 - 219, 1972.PubMedCrossRefGoogle Scholar
  5. 4.
    Seeman, P.: The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev., 24: 583 - 655, 1972.PubMedGoogle Scholar
  6. 5.
    Moore, J.W., Ulbricht, W. and Takata, M.: Effect of ethanol on the sodium and potassium conductances of the squid axon membrane. J. Gen. Physiol., 48: 279 - 295, 1964.PubMedCrossRefGoogle Scholar
  7. 6.
    Armstrong, C.M. and Binstock, L.: The effects of several alcohols on the properties of the squid giant axon. J. Gen. PhysioZ., 48: 265 - 277, 1964.CrossRefGoogle Scholar
  8. 7.
    Roth, S. and Seeman, P.: All lipid-soluble anesthetics protect red cells. Nature, 231: 284 - 285, 1971.Google Scholar
  9. 8.
    Roth, S. and Seeman, P.: Anesthetics expand erythrocyte membranes without causing loss of K. Biochim. Biophys. Acta., 225: 190 - 198, 1972.Google Scholar
  10. 9.
    Booij, H.L. and Dijkshoorn, W.: Studies on hemolysis, II. The influence of alcohols on monomolecular films of stearic acid compared with that on hemolysis. Acta. PhysioZ. Pharmacol. Neer., 1:Google Scholar
  11. 10.
    Gatenbeck, S. and Ehrenberg, L.: The influence of anesthetics on monomolecular films of cell lipids. Ark. Kemi., 5: 333340, 1953.Google Scholar
  12. 11.
    Skou, J.C.: Relation between the ability of various compounds to block nervous conduction and their penetration into a monomolecular layer of nervous tissue lipids. Biochim. Biophys. Acta., 30: 625 - 629, 1958.PubMedCrossRefGoogle Scholar
  13. 12.
    Brand, L. and Gohlke, J.R.: Fluoresence probes for structure. Annu. Rev. Biochem., 4: 843 - 868, 1972.CrossRefGoogle Scholar
  14. 13.
    Roth, S. and Spero, L.: Interaction of red cell ghost membrane and local anesthetics in the presence of 1-anilino-8-naphtha- lene sulphonic acid (ANS). Proc. Can. Fed. Biol. Soc., 13: 511, 1970.Google Scholar
  15. 14.
    Spero, L. and Roth, S.: Fluorescent hydrophobic probe study of the interaction of local anesthetics and red cell ghosts. Fed. Prof., 29: 474, 1970.Google Scholar
  16. 15.
    Paterson, S.J., Butler, K.W., Huang, P., Laballe, J., Smith, I.C.P. and Schneider, H.: The effects of alcohols on lipid bilayers: spin label study. Biochim. Biophys. Acta., 266: 597 - 602, 1972.PubMedCrossRefGoogle Scholar
  17. 16.
    Horsey, W.J. and Akert, K.: The influence of ethyl alcohol on the spontaneous electrical activity of the cerebral cortex and subcortical structures of the cat. Quart. J. Stud. Alc., 14: 363 - 377, 1953.Google Scholar
  18. 17.
    Hadji-Dimo, A.A., Edberg, R. and Ingvar, D.H.: Effects of ethanol on EEG and cortical blood flow in the cat. Quart. J. Stud. Alc., 29: 828 - 838, 1968.Google Scholar
  19. 18.
    Eidelberg, E., Bond, N.L. and Kelter, A.: Effects of alcohol on cerebellar and vestibular neurons. Arch. Int. Pharmacodyn., 192: 213 - 219, 1971.PubMedGoogle Scholar
  20. 19.
    Eidelberg, E.: Effects of ethanol upon central nervous system neurons. In: Recent Advances in Studies of Alcoholism. N.K. Mello and J.H. Mendelson (eds.), pp. 274 - 287, U.S. Government Printing Office, Washington, 1971.Google Scholar
  21. 20.
    DiPerri, R., Dravid, A., Scherigerat, A. and Himwich, H.F.: Effects of alcohol on evoked potential of various parts of the central nervous system of the cat. Quart. J. Stud. Alc., 29: 20 - 37, 1968.Google Scholar
  22. 21.
    Bergmann, M.C., Klee, M.W. and Faber, D.S.: Different sensitivities to ethanol of three early transient voltage clamp currents of Aplysia neurons. Pfluger Arch, 348: 139 - 153, 1974.CrossRefGoogle Scholar
  23. 22.
    Kalant, H., Mons, W. and Mahon, M.A.: Acute effects of ethanol on tissue electrolytes in the rat. Can. J. Physiol. Pharmacol., 44: 1 - 12, 1966.PubMedCrossRefGoogle Scholar
  24. 23.
    Wallgren, H., Nikander, P., Boguslawsky, P. and Linkola, J.: Effects of ethanol, tert-butanol and clomethiazole on net movement of sodium and potassium in electrically stimulated cerebral tissue. Acta. Physiol. Scand., 91: 83 - 93, 1974.PubMedCrossRefGoogle Scholar
  25. 24.
    Hokin, L.E.: On the molecular characterization of the Na-K ATPase. J. Gen. Physiol., 54: 327s - 342s, 1969.CrossRefGoogle Scholar
  26. 25.
    Israel, Y., Kalant, H. and LeBlanc, A.E.: Effects of lower alcohols on potassium transport and microsomal ATPase activity of rat cerebral cortex. Biochem. J., 100: 27 - 33, 1966.Google Scholar
  27. 26.
    Israel, Y., Kalant, H. and Laufer, J.: Effects of ethanol on Na, K, Mg-stimulated microsomal ATPase activity. Biochem. Pharmacol., 14: 1803 - 1814, 1965.PubMedCrossRefGoogle Scholar
  28. 27.
    Sun, A.Y. and Samorajski, T.: Effects of ethanol on the activity of ATPase and acetyl cholinesterase in synaptosomes isolated from guinea-pig grain. J. Neurochem., 17: 1365 1372, 1970.Google Scholar
  29. 28.
    Festoff, B.W. and Appel, S.H.: Effect of diphenylhydantoin on synaptosomal Na-K ATPase. J. Clin. Invest., 47: 2752 - 2758, 1968.PubMedCrossRefGoogle Scholar
  30. 29.
    Lewin, E. and Bleck, V.B.: The effect of diphenylhydantoin administration on Na-K ATPase in cortex. Neurol., 21: 647651, 1971.Google Scholar
  31. 30.
    Carpenter, D.O.: Membrane potential produced directly by the Na+ pump in Aplysia neurons. Comp. Biochem. Physiol., 35: 371 - 385, 1970.CrossRefGoogle Scholar
  32. 31.
    Hodgkin, A.L. and Keynes, R.D.: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol., 128: 28 - 60, 1955.Google Scholar
  33. 32.
    Bourke, R.S. and Tower, D.B.: Fluid compartmentation and electrolytes of cat cerebral cortex in vitro: II. Sodium, potassium and chloride of mature cerebral cortex. J. Neurochem., 13: 1099 - 1117, 1966.PubMedCrossRefGoogle Scholar
  34. 33.
    Yoshida, H., Nukada, R. and Fujisawa, H.: The effect of ouabain on ion transport and metabolic turnover of phospholipids of brain slices. Biochim. Biophys. Acta., 48: 614615, 1961.Google Scholar
  35. 34.
    Whittam, R.: Active cation transport as a pace-maker of respiration. Nature, 191: 603 - 604, 1961.PubMedCrossRefGoogle Scholar
  36. 35.
    Whittam, R.: The dependence of the respiration of brain cortex on active cation transport. Biochem. J., 82: 205 - 212, 1962.PubMedGoogle Scholar
  37. 36.
    Schwartz, A.: The effect of ouabain on potassium content, phosphoprotein metabolism and oxygen consumption of guinea-pig cerebral tissue. Biochem. Pharmacol., 11: 389 - 391, 1962.PubMedCrossRefGoogle Scholar
  38. 37.
    Joanny, P. and Corriol, J.: Influence de l'ouabaine sur les movements ioniques, la respiration et la glycoyse aerobie du cortex cerebrale isole de mammifère. Arch. Sci. Physiol., 18: 325 - 337, 1964.Google Scholar
  39. 38.
    Swanson, P.D. and Mcllwain, J.: Inhibition of the Na-K ATPase after treatment of isolated guinea-pig cerebral cortex with ouabain and other agents. J. Neurochem., 12: 877 - 891, 1965.PubMedCrossRefGoogle Scholar
  40. 39.
    Skou, J.C.: Preparation from mammalian brain and kidney of the enzyme system involved in active transport of sodium and potassium. Biochim. Biophys. Acta., 58: 314 - 325, 1962.PubMedCrossRefGoogle Scholar
  41. 40.
    Bonting, D.L., Caravaggio, L.L. and Hawkins, N.M.: Studies on Na-K ATPase: IV. Correlation with cation transport sensitive to cardiac glycosides. Arch. Biochem. Biophys., 98: 413 - 419, 1962.PubMedCrossRefGoogle Scholar
  42. 41.
    Aldridge, W.N.: ATPase in the microsomal fraction from rat brain. Biochem. J., 83: 527 - 533, 1962.PubMedGoogle Scholar
  43. 42.
    Bignami, A. and Palladini, G.: Experimentally produced cerebral status spongiosus and continuous pseudorhythmic electroencephalographic discharges with a membrane ATPase inhibitor. Nature, 209: 413 - 414, 1966.PubMedCrossRefGoogle Scholar
  44. 43.
    Cserr, H.: Potassium exchange between cerebrospinal fluid,Google Scholar
  45. plasma and brain. Amer. J. Physiol., 209: 1219 - 1226, 1965.Google Scholar
  46. 44.
    Katzman, R., Graziana, L., Kaplan R. and Escriva, A.: Exchange of cerebrospinal fluid potassium with blood and brain. Arch. Neurol., 13: 513 - 524, 1965.PubMedCrossRefGoogle Scholar
  47. 45.
    Ames, A., Higashi, K. and Nesbett, F.B.: Effects of PCO2, acetazolamide and ouabain on volume and composition of choroid-plexus fluid. J. Physiol., 181: 516 - 524, 1965.PubMedGoogle Scholar
  48. 46.
    Colfer, H.F. and Essex, H.E.: Distribution of total electrolyte potassium and sodium in cerebral cortex in relation to experimental convulsions. Amer. J. Physiol., 150: 27 - 36, 1947.PubMedGoogle Scholar
  49. 47.
    Bignami, A., Palladini, G. and Venturini, G.: Effect of cardiazol on Na-K ATPase of the rat brain in vivo. Brain Res., 1: 413 - 414, 1966.Google Scholar
  50. 48.
    Brown, D.J. and Stone, W.E.: Effects of convulsants on cortical ATPases. J. Neurochem., 20: 1461 - 1467, 1973.PubMedCrossRefGoogle Scholar
  51. 49.
    Gross, G.J. and Woodbury, D.M.: Effects of pentylenetetrazol on ion transport in the isolated toad bladder. J. Pharmacol. Exp. Ther., 181: 257 - 272, 1972.PubMedGoogle Scholar
  52. 50.
    Harmony, R., Urba-Holmgren, R. Urbay, C.M. and Szava, S.: Na-K ATPase activity in experimental epileptogenic foci. Brain Res, 11: 672 - 680, 1968.PubMedCrossRefGoogle Scholar
  53. 51.
    Toman, J.E.P. and Goodman, L.S.: Anticonvulsants. Physiol. Rev., 28: 409 - 432, 1948.PubMedGoogle Scholar
  54. 52.
    Esplin, D.W. and Curto, E.M.: Effects of trimethadione on synpatic transmission in the spinal cord: antagonism of trimethadione and pentylenetetrazole. J. Pharmacol. Exp. Ther., 121: 457 - 467, 1957.PubMedGoogle Scholar
  55. 53.
    Woodbury, D.M.: Effect of diphenylhydantoin on electrolytes and radiosodium turnover in brain and other tissues in normal, hyponatremic and postictal rats. J. Pharmacol. Exp. Ther., 115: 74 - 95, 1955.PubMedGoogle Scholar
  56. 54.
    Rawson, M.D. and Pincus, J.H.: The effect of diphenylhydantoin on the Na-K ATPase in microsomal fractions of rat and guinea-pig and on whole homogenates of human brain. Biochem. Pharmacol., 17: 573 - 579, 1968.PubMedCrossRefGoogle Scholar
  57. 55.
    Lewin, E., Charles, G. and McCrimmon, A.: Discharging cortical lesions produced by freezing. Neurol, 19: 565 - 569, 1969.Google Scholar
  58. 56.
    Formby, B.: The in vivo and in vitro effects of diphenylhydantoin and phenobarbitone on K-nitrophenyl phosphatase and Na-K ATPase in particulate membrane fractions from rat brain. J. Pharm. Pharmac., 22: 81 - 85, 1970.CrossRefGoogle Scholar
  59. 57.
    Rubin, R.P.: The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev., 22: 389 - 428, 1970.PubMedGoogle Scholar
  60. 58.
    Rothstein, A.: Membrane phenomena. Ann. Rev. Physiol., 530: 15 - 72, 1968.CrossRefGoogle Scholar
  61. 59.
    Hodgkin, A.L.: Ion movements and electrical activity in giant nerve fibers. Proc. Roy. Soc. S.B., 148: 1 - 37, 1958.CrossRefGoogle Scholar
  62. 60.
    Cooke, W.J. and Robinson, J.D.: Factors influencing calcium movements in rat brain slices. Amer. J. Physiol., 221: 218 - 225, 1971.PubMedGoogle Scholar
  63. 61.
    Stahl, W.L. and Swanson, P.D.: Movements of calcium and other cations in isolated cerebral cortex. J. Neurochem., 18: 415 - 427, 1971.PubMedCrossRefGoogle Scholar
  64. 62.
    Blaustein, M.P. and Weismann, W.P.: Effect of sodium ions on calcium movement in isolated synaptic terminals. Proc. Nat. Acad. Sci., 66: 664 - 671, 1970.PubMedCrossRefGoogle Scholar
  65. 63.
    Tjeol, S., Bianchi, C.P. and Haugaard, N.: The function of ATP in calcium uptake by rat brain mitochondria. Biochim. Biophys. Acta., 216: 270 - 273, 1970.CrossRefGoogle Scholar
  66. 64.
    Lust, W.D. and Robinson, J.D.: Calcium accumulation by isolated nerve ending particles from brain: II. Factors influencing calcium movements. J. Neurobiol., 1: 317 - 328, 1970.CrossRefGoogle Scholar
  67. 65.
    Diamond, I. and Goldberg, A.L.: Uptake and release of 45ca1cium by brain microsomes, synaptosomes and synaptic vesicles. J. Neurochem., 18: 1419 - 1431, 1971.PubMedCrossRefGoogle Scholar
  68. 65a.
    Hoffman, J.F.: Cation transport and structure of the red-cell plasma membrane. Circulation 26: 1201 - 1213, 1962.Google Scholar
  69. 66.
    Seeman, P., Chau, M., Goldberg, M., Sauks, T. and Sax, L.: The binding of calcium to the cell membrane increased by volatile anesthetics (alcohols, acetone, ether) which induce sensitization of nerve or muscle. Biochim. Biophys. Acta., 225: 185 - 193, 1971.PubMedCrossRefGoogle Scholar
  70. a. Ross, D.H., Medina, M.A. and Cardenas, H.L.: Morphine andGoogle Scholar
  71. ethanol, selective depletion of regional brain calcium. Science, 186: 63 - 65, 1974.CrossRefGoogle Scholar
  72. 67.
    Peng, T.C., Cooper, C.W. and Munson, P.L.: The hypocalcemic effect of ethyl alcohol in rats and dogs. Endocrinology, 91: 586 - 593, 1972.PubMedCrossRefGoogle Scholar
  73. 68.
    Verdy, M. and Caron, D.: Ethanol et absorption du calcium chez l'humain. BioZ. Gastroenterol., 6: 157 - 160, 1973.Google Scholar
  74. 69.
    Krawitt, E.L.: Ethanol inhibits intestinal calcium transport in rats. Nature, 243: 88 - 89, 1973.PubMedCrossRefGoogle Scholar
  75. 70.
    Mendelson, J.H., LaDou, J. and Corbett, C.: Experimentally induced chronic intoxication and withdrawal in alcoholics: IX. Serum magnesium and glucose. Quart. J. Stud. Ale. Suppl., 2: 108 - 110, 1964.Google Scholar
  76. 71.
    Simpson, L.L.: The role of calcium in neurohumoral and neurohormonal processes. J. Pharm. Pharmac., 20: 889 - 910, 1968.CrossRefGoogle Scholar
  77. 72.
    Davis, J.A., Harvey, D.R. and Yu, J.S.: Neonatal fits associated with hypomagnesaemia. Arch. Dis. Childh., 40: 286290, 1965.Google Scholar
  78. 73.
    Mishre, R.K. and Perey, F.: Studies on experimental magnesium deficiency in the albino rat. III. Influence of certain salts and dietary constituents on the electro seizure threshold_ of rats on Mg-deficient diet. Rev. Canad. BioZ., 19: 143 - 153, 1960.Google Scholar
  79. 74.
    Victor, M. and Adams, R.D.: The effect of alcohol on the nervous system. Ass. Res. Nerv. Dis. Proc., 32: 526 - 573, 1953.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Walter A. Hunt
    • 1
  1. 1.Neurobiology DepartmentArmed Forces Radiobiology Research InstituteBethesdaUSA

Personalised recommendations