Skip to main content

The Effects of Aliphatic Alcohols on the Biophysical and Biochemical Correlates of Membrane Function

  • Chapter
Biochemical Pharmacology of Ethanol

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 56))

Abstract

The mechanism by which aliphatic alcohols produce depression of the central nervous system (CNS) is not yet understood. Any proposed mechanism should conform to at least the following criteria: (a) biophysical and biochemical changes induced by alcohols have to occur at the sublethal concentrations found in vivo after alcohol ingestion and in physiologically important magnitudes to be considered relevant; (b) the time course of these changes must correlate with the appearance and disappearance of CNS depression and with changes in blood (brain) alcohol levels, since the time course of depression corresponds with these changes; (c) the increasing potency of alcohols with increasing lipid solubility must be explained; and (d) the changes involved must be relevant to mechanisms responsible for neuroexcitability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grenell, R.G.: Effects of alcohol on the neuron. In: The Biology of Alcoholism, Vol. 2, B. Kissin and H. Begleiter (eds.), pp. 1 - 19, Plenum Press, New York, 1972.

    Google Scholar 

  2. Meyer, H.H. and Gottlieb, R.: Experimental pharmacology as a basis for therapeutics, 2nd ed., V.E. Henderson (transl.) p. 121, J.B. Lippincott Co., Philadelphia, 1926.

    Google Scholar 

  3. Meyer, K.H.: Contributions to the theory of narcosis. Trans. Faraday Soc., 33: 1062 - 1968, 1937.

    Article  CAS  Google Scholar 

  4. Roth, S. and Seeman, P.: The membrane concentrations of neutral and positive anesthetics (alcohol, chlorpromazine, morphine) fit the Meyer-Overton rule of anesthesia; negative narcotics do not. Biochim. Biophys. Acta, 255: 207 - 219, 1972.

    Article  PubMed  CAS  Google Scholar 

  5. Seeman, P.: The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev., 24: 583 - 655, 1972.

    PubMed  CAS  Google Scholar 

  6. Moore, J.W., Ulbricht, W. and Takata, M.: Effect of ethanol on the sodium and potassium conductances of the squid axon membrane. J. Gen. Physiol., 48: 279 - 295, 1964.

    Article  PubMed  CAS  Google Scholar 

  7. Armstrong, C.M. and Binstock, L.: The effects of several alcohols on the properties of the squid giant axon. J. Gen. PhysioZ., 48: 265 - 277, 1964.

    Article  CAS  Google Scholar 

  8. Roth, S. and Seeman, P.: All lipid-soluble anesthetics protect red cells. Nature, 231: 284 - 285, 1971.

    CAS  Google Scholar 

  9. Roth, S. and Seeman, P.: Anesthetics expand erythrocyte membranes without causing loss of K. Biochim. Biophys. Acta., 225: 190 - 198, 1972.

    Google Scholar 

  10. Booij, H.L. and Dijkshoorn, W.: Studies on hemolysis, II. The influence of alcohols on monomolecular films of stearic acid compared with that on hemolysis. Acta. PhysioZ. Pharmacol. Neer., 1:

    Google Scholar 

  11. Gatenbeck, S. and Ehrenberg, L.: The influence of anesthetics on monomolecular films of cell lipids. Ark. Kemi., 5: 333340, 1953.

    Google Scholar 

  12. Skou, J.C.: Relation between the ability of various compounds to block nervous conduction and their penetration into a monomolecular layer of nervous tissue lipids. Biochim. Biophys. Acta., 30: 625 - 629, 1958.

    Article  PubMed  CAS  Google Scholar 

  13. Brand, L. and Gohlke, J.R.: Fluoresence probes for structure. Annu. Rev. Biochem., 4: 843 - 868, 1972.

    Article  Google Scholar 

  14. Roth, S. and Spero, L.: Interaction of red cell ghost membrane and local anesthetics in the presence of 1-anilino-8-naphtha- lene sulphonic acid (ANS). Proc. Can. Fed. Biol. Soc., 13: 511, 1970.

    Google Scholar 

  15. Spero, L. and Roth, S.: Fluorescent hydrophobic probe study of the interaction of local anesthetics and red cell ghosts. Fed. Prof., 29: 474, 1970.

    Google Scholar 

  16. Paterson, S.J., Butler, K.W., Huang, P., Laballe, J., Smith, I.C.P. and Schneider, H.: The effects of alcohols on lipid bilayers: spin label study. Biochim. Biophys. Acta., 266: 597 - 602, 1972.

    Article  PubMed  CAS  Google Scholar 

  17. Horsey, W.J. and Akert, K.: The influence of ethyl alcohol on the spontaneous electrical activity of the cerebral cortex and subcortical structures of the cat. Quart. J. Stud. Alc., 14: 363 - 377, 1953.

    CAS  Google Scholar 

  18. Hadji-Dimo, A.A., Edberg, R. and Ingvar, D.H.: Effects of ethanol on EEG and cortical blood flow in the cat. Quart. J. Stud. Alc., 29: 828 - 838, 1968.

    CAS  Google Scholar 

  19. Eidelberg, E., Bond, N.L. and Kelter, A.: Effects of alcohol on cerebellar and vestibular neurons. Arch. Int. Pharmacodyn., 192: 213 - 219, 1971.

    PubMed  CAS  Google Scholar 

  20. Eidelberg, E.: Effects of ethanol upon central nervous system neurons. In: Recent Advances in Studies of Alcoholism. N.K. Mello and J.H. Mendelson (eds.), pp. 274 - 287, U.S. Government Printing Office, Washington, 1971.

    Google Scholar 

  21. DiPerri, R., Dravid, A., Scherigerat, A. and Himwich, H.F.: Effects of alcohol on evoked potential of various parts of the central nervous system of the cat. Quart. J. Stud. Alc., 29: 20 - 37, 1968.

    Google Scholar 

  22. Bergmann, M.C., Klee, M.W. and Faber, D.S.: Different sensitivities to ethanol of three early transient voltage clamp currents of Aplysia neurons. Pfluger Arch, 348: 139 - 153, 1974.

    Article  CAS  Google Scholar 

  23. Kalant, H., Mons, W. and Mahon, M.A.: Acute effects of ethanol on tissue electrolytes in the rat. Can. J. Physiol. Pharmacol., 44: 1 - 12, 1966.

    Article  PubMed  CAS  Google Scholar 

  24. Wallgren, H., Nikander, P., Boguslawsky, P. and Linkola, J.: Effects of ethanol, tert-butanol and clomethiazole on net movement of sodium and potassium in electrically stimulated cerebral tissue. Acta. Physiol. Scand., 91: 83 - 93, 1974.

    Article  PubMed  CAS  Google Scholar 

  25. Hokin, L.E.: On the molecular characterization of the Na-K ATPase. J. Gen. Physiol., 54: 327s - 342s, 1969.

    Article  CAS  Google Scholar 

  26. Israel, Y., Kalant, H. and LeBlanc, A.E.: Effects of lower alcohols on potassium transport and microsomal ATPase activity of rat cerebral cortex. Biochem. J., 100: 27 - 33, 1966.

    Google Scholar 

  27. Israel, Y., Kalant, H. and Laufer, J.: Effects of ethanol on Na, K, Mg-stimulated microsomal ATPase activity. Biochem. Pharmacol., 14: 1803 - 1814, 1965.

    Article  PubMed  CAS  Google Scholar 

  28. Sun, A.Y. and Samorajski, T.: Effects of ethanol on the activity of ATPase and acetyl cholinesterase in synaptosomes isolated from guinea-pig grain. J. Neurochem., 17: 1365 1372, 1970.

    Google Scholar 

  29. Festoff, B.W. and Appel, S.H.: Effect of diphenylhydantoin on synaptosomal Na-K ATPase. J. Clin. Invest., 47: 2752 - 2758, 1968.

    Article  PubMed  CAS  Google Scholar 

  30. Lewin, E. and Bleck, V.B.: The effect of diphenylhydantoin administration on Na-K ATPase in cortex. Neurol., 21: 647651, 1971.

    Google Scholar 

  31. Carpenter, D.O.: Membrane potential produced directly by the Na+ pump in Aplysia neurons. Comp. Biochem. Physiol., 35: 371 - 385, 1970.

    Article  CAS  Google Scholar 

  32. Hodgkin, A.L. and Keynes, R.D.: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol., 128: 28 - 60, 1955.

    CAS  Google Scholar 

  33. Bourke, R.S. and Tower, D.B.: Fluid compartmentation and electrolytes of cat cerebral cortex in vitro: II. Sodium, potassium and chloride of mature cerebral cortex. J. Neurochem., 13: 1099 - 1117, 1966.

    Article  PubMed  CAS  Google Scholar 

  34. Yoshida, H., Nukada, R. and Fujisawa, H.: The effect of ouabain on ion transport and metabolic turnover of phospholipids of brain slices. Biochim. Biophys. Acta., 48: 614615, 1961.

    Google Scholar 

  35. Whittam, R.: Active cation transport as a pace-maker of respiration. Nature, 191: 603 - 604, 1961.

    Article  PubMed  CAS  Google Scholar 

  36. Whittam, R.: The dependence of the respiration of brain cortex on active cation transport. Biochem. J., 82: 205 - 212, 1962.

    PubMed  CAS  Google Scholar 

  37. Schwartz, A.: The effect of ouabain on potassium content, phosphoprotein metabolism and oxygen consumption of guinea-pig cerebral tissue. Biochem. Pharmacol., 11: 389 - 391, 1962.

    Article  PubMed  CAS  Google Scholar 

  38. Joanny, P. and Corriol, J.: Influence de l'ouabaine sur les movements ioniques, la respiration et la glycoyse aerobie du cortex cerebrale isole de mammifère. Arch. Sci. Physiol., 18: 325 - 337, 1964.

    CAS  Google Scholar 

  39. Swanson, P.D. and Mcllwain, J.: Inhibition of the Na-K ATPase after treatment of isolated guinea-pig cerebral cortex with ouabain and other agents. J. Neurochem., 12: 877 - 891, 1965.

    Article  PubMed  CAS  Google Scholar 

  40. Skou, J.C.: Preparation from mammalian brain and kidney of the enzyme system involved in active transport of sodium and potassium. Biochim. Biophys. Acta., 58: 314 - 325, 1962.

    Article  PubMed  CAS  Google Scholar 

  41. Bonting, D.L., Caravaggio, L.L. and Hawkins, N.M.: Studies on Na-K ATPase: IV. Correlation with cation transport sensitive to cardiac glycosides. Arch. Biochem. Biophys., 98: 413 - 419, 1962.

    Article  PubMed  CAS  Google Scholar 

  42. Aldridge, W.N.: ATPase in the microsomal fraction from rat brain. Biochem. J., 83: 527 - 533, 1962.

    PubMed  CAS  Google Scholar 

  43. Bignami, A. and Palladini, G.: Experimentally produced cerebral status spongiosus and continuous pseudorhythmic electroencephalographic discharges with a membrane ATPase inhibitor. Nature, 209: 413 - 414, 1966.

    Article  PubMed  CAS  Google Scholar 

  44. Cserr, H.: Potassium exchange between cerebrospinal fluid,

    Google Scholar 

  45. plasma and brain. Amer. J. Physiol., 209: 1219 - 1226, 1965.

    Google Scholar 

  46. Katzman, R., Graziana, L., Kaplan R. and Escriva, A.: Exchange of cerebrospinal fluid potassium with blood and brain. Arch. Neurol., 13: 513 - 524, 1965.

    Article  PubMed  CAS  Google Scholar 

  47. Ames, A., Higashi, K. and Nesbett, F.B.: Effects of PCO2, acetazolamide and ouabain on volume and composition of choroid-plexus fluid. J. Physiol., 181: 516 - 524, 1965.

    PubMed  Google Scholar 

  48. Colfer, H.F. and Essex, H.E.: Distribution of total electrolyte potassium and sodium in cerebral cortex in relation to experimental convulsions. Amer. J. Physiol., 150: 27 - 36, 1947.

    PubMed  CAS  Google Scholar 

  49. Bignami, A., Palladini, G. and Venturini, G.: Effect of cardiazol on Na-K ATPase of the rat brain in vivo. Brain Res., 1: 413 - 414, 1966.

    CAS  Google Scholar 

  50. Brown, D.J. and Stone, W.E.: Effects of convulsants on cortical ATPases. J. Neurochem., 20: 1461 - 1467, 1973.

    Article  PubMed  CAS  Google Scholar 

  51. Gross, G.J. and Woodbury, D.M.: Effects of pentylenetetrazol on ion transport in the isolated toad bladder. J. Pharmacol. Exp. Ther., 181: 257 - 272, 1972.

    PubMed  CAS  Google Scholar 

  52. Harmony, R., Urba-Holmgren, R. Urbay, C.M. and Szava, S.: Na-K ATPase activity in experimental epileptogenic foci. Brain Res, 11: 672 - 680, 1968.

    Article  PubMed  CAS  Google Scholar 

  53. Toman, J.E.P. and Goodman, L.S.: Anticonvulsants. Physiol. Rev., 28: 409 - 432, 1948.

    PubMed  CAS  Google Scholar 

  54. Esplin, D.W. and Curto, E.M.: Effects of trimethadione on synpatic transmission in the spinal cord: antagonism of trimethadione and pentylenetetrazole. J. Pharmacol. Exp. Ther., 121: 457 - 467, 1957.

    PubMed  CAS  Google Scholar 

  55. Woodbury, D.M.: Effect of diphenylhydantoin on electrolytes and radiosodium turnover in brain and other tissues in normal, hyponatremic and postictal rats. J. Pharmacol. Exp. Ther., 115: 74 - 95, 1955.

    PubMed  CAS  Google Scholar 

  56. Rawson, M.D. and Pincus, J.H.: The effect of diphenylhydantoin on the Na-K ATPase in microsomal fractions of rat and guinea-pig and on whole homogenates of human brain. Biochem. Pharmacol., 17: 573 - 579, 1968.

    Article  PubMed  CAS  Google Scholar 

  57. Lewin, E., Charles, G. and McCrimmon, A.: Discharging cortical lesions produced by freezing. Neurol, 19: 565 - 569, 1969.

    CAS  Google Scholar 

  58. Formby, B.: The in vivo and in vitro effects of diphenylhydantoin and phenobarbitone on K-nitrophenyl phosphatase and Na-K ATPase in particulate membrane fractions from rat brain. J. Pharm. Pharmac., 22: 81 - 85, 1970.

    Article  CAS  Google Scholar 

  59. Rubin, R.P.: The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev., 22: 389 - 428, 1970.

    PubMed  CAS  Google Scholar 

  60. Rothstein, A.: Membrane phenomena. Ann. Rev. Physiol., 530: 15 - 72, 1968.

    Article  Google Scholar 

  61. Hodgkin, A.L.: Ion movements and electrical activity in giant nerve fibers. Proc. Roy. Soc. S.B., 148: 1 - 37, 1958.

    Article  CAS  Google Scholar 

  62. Cooke, W.J. and Robinson, J.D.: Factors influencing calcium movements in rat brain slices. Amer. J. Physiol., 221: 218 - 225, 1971.

    PubMed  CAS  Google Scholar 

  63. Stahl, W.L. and Swanson, P.D.: Movements of calcium and other cations in isolated cerebral cortex. J. Neurochem., 18: 415 - 427, 1971.

    Article  PubMed  CAS  Google Scholar 

  64. Blaustein, M.P. and Weismann, W.P.: Effect of sodium ions on calcium movement in isolated synaptic terminals. Proc. Nat. Acad. Sci., 66: 664 - 671, 1970.

    Article  PubMed  CAS  Google Scholar 

  65. Tjeol, S., Bianchi, C.P. and Haugaard, N.: The function of ATP in calcium uptake by rat brain mitochondria. Biochim. Biophys. Acta., 216: 270 - 273, 1970.

    Article  Google Scholar 

  66. Lust, W.D. and Robinson, J.D.: Calcium accumulation by isolated nerve ending particles from brain: II. Factors influencing calcium movements. J. Neurobiol., 1: 317 - 328, 1970.

    Article  CAS  Google Scholar 

  67. Diamond, I. and Goldberg, A.L.: Uptake and release of 45ca1cium by brain microsomes, synaptosomes and synaptic vesicles. J. Neurochem., 18: 1419 - 1431, 1971.

    Article  PubMed  CAS  Google Scholar 

  68. Hoffman, J.F.: Cation transport and structure of the red-cell plasma membrane. Circulation 26: 1201 - 1213, 1962.

    CAS  Google Scholar 

  69. Seeman, P., Chau, M., Goldberg, M., Sauks, T. and Sax, L.: The binding of calcium to the cell membrane increased by volatile anesthetics (alcohols, acetone, ether) which induce sensitization of nerve or muscle. Biochim. Biophys. Acta., 225: 185 - 193, 1971.

    Article  PubMed  CAS  Google Scholar 

  70. a. Ross, D.H., Medina, M.A. and Cardenas, H.L.: Morphine and

    Google Scholar 

  71. ethanol, selective depletion of regional brain calcium. Science, 186: 63 - 65, 1974.

    Article  Google Scholar 

  72. Peng, T.C., Cooper, C.W. and Munson, P.L.: The hypocalcemic effect of ethyl alcohol in rats and dogs. Endocrinology, 91: 586 - 593, 1972.

    Article  PubMed  CAS  Google Scholar 

  73. Verdy, M. and Caron, D.: Ethanol et absorption du calcium chez l'humain. BioZ. Gastroenterol., 6: 157 - 160, 1973.

    CAS  Google Scholar 

  74. Krawitt, E.L.: Ethanol inhibits intestinal calcium transport in rats. Nature, 243: 88 - 89, 1973.

    Article  PubMed  CAS  Google Scholar 

  75. Mendelson, J.H., LaDou, J. and Corbett, C.: Experimentally induced chronic intoxication and withdrawal in alcoholics: IX. Serum magnesium and glucose. Quart. J. Stud. Ale. Suppl., 2: 108 - 110, 1964.

    Google Scholar 

  76. Simpson, L.L.: The role of calcium in neurohumoral and neurohormonal processes. J. Pharm. Pharmac., 20: 889 - 910, 1968.

    Article  CAS  Google Scholar 

  77. Davis, J.A., Harvey, D.R. and Yu, J.S.: Neonatal fits associated with hypomagnesaemia. Arch. Dis. Childh., 40: 286290, 1965.

    Google Scholar 

  78. Mishre, R.K. and Perey, F.: Studies on experimental magnesium deficiency in the albino rat. III. Influence of certain salts and dietary constituents on the electro seizure threshold_ of rats on Mg-deficient diet. Rev. Canad. BioZ., 19: 143 - 153, 1960.

    Google Scholar 

  79. Victor, M. and Adams, R.D.: The effect of alcohol on the nervous system. Ass. Res. Nerv. Dis. Proc., 32: 526 - 573, 1953.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Hunt, W.A. (1975). The Effects of Aliphatic Alcohols on the Biophysical and Biochemical Correlates of Membrane Function. In: Majchrowicz, E. (eds) Biochemical Pharmacology of Ethanol. Advances in Experimental Medicine and Biology, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7529-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7529-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7531-9

  • Online ISBN: 978-1-4684-7529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics