Metabolic Correlates of Ethanol, Acetaldehyde, Acetate and Methanol in Humans and Animals

  • Edward Majchrowicz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 56)


The consensus of opinion is that the immediate causes of alcoholism stem mostly from psychological or sociological factors. However, we have little firm knowledge why some people use alcohol excessively; nor do we know much about why some persons are more sensitive or more tolerant to alcohol’s effects than are others.It is well known, however, that ethyl alcohol has important toxic effects on the human organism. The familiar changes in behavior observed during alcohol intoxication and during the alcohol withdrawal period are reflections of some biochemical and/or biophysical changes in the central nervous system and are related to the concentrations of ethanol in body fluids and in the brain.


Biogenic Amine Alcoholic Beverage Alcohol Withdrawal Syndrome Ethanol Metabolism Blood Ethanol Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Westerfeld, W.W.: The metabolism of alcohol. Texas Rep. BioZ. Med., 13: 559–577, 1955.Google Scholar
  2. 2.
    Hawkins, R.D. and Kalant, H.: The metabolism of ethanol and its metabolic effects. PharmacoZ. Rev., 24: 67–157, 1972.Google Scholar
  3. 3.
    Lundquist, F.: The metabolism of alcohol. In: Biological Basis of Alcoholism. Y. Israel and J. Mardones (eds.), pp. 1–52, Wiley-Intescience, New York, 1971.Google Scholar
  4. 4.
    Fritz, I.B.: Factors influencing the rates of long-chain fatty acid oxidation and synthesis in mammalian systems. Physiol. Rev., 52–129, 1961.Google Scholar
  5. 5.
    DiLuzio, N.R.: Effect of acute ethanol intoxication on liver and plasma lipid fractions of the rat. Amer. J. PhysioZ., 194: 453–456, 1958.Google Scholar
  6. 6.
    Horning, M.G., Williams, E.A., Maling, H.M. and Brodie, B.B.: Depot fat as a source of increased liver triglycerides after ethanol. Biochem. Biophys. Res. Comm., 3: 635–640, 1960.PubMedCrossRefGoogle Scholar
  7. 7.
    Smith, M.E. and Newman, H.W.: The rate of ethanol metabolism in fed and fasting animals. J. BioZ. Chem., 234: 1544 1549, 1959.Google Scholar
  8. 8.
    Forsander, O.A.: Influence of ethanol on the redox state of the liver. Quart. J. Stud. Ale., 31: 550–570, 1970.Google Scholar
  9. 9.
    Krebs, H.A.: The effects of ethanol on the metabolic activities of the liver. In: Advances in Enzyme Regulation. G. Weber (ed.), Vol. 6, pp. 467–480, Pergamon Press, Oxford, London-New York, 1968.Google Scholar
  10. 10.
    Majchrowicz, E. and Mendelson, J.H.: Blood methanol concentrations during experimentally induced ethanol intoxication in alcoholics. J. Pharmacoi. Exp. Ther., 179: 293–300, 1971.Google Scholar
  11. 11.
    Majchrowicz, E. and Sutherland, V.C.: Detection and identification of methanol in urine of drinking alcoholics. Pharmacologist, Abs., 13: 219, 1971.Google Scholar
  12. 12.
    Pieper, W.A. and Skeen, M.J.: Changes in blood methanol concentrations in chimpanzees during periods of chronic ethanol ingestion. Biochem. Pharmacol., 22: 163–173, 1973.PubMedCrossRefGoogle Scholar
  13. 13.
    Majchrowicz, E. and Steinglass, P.: Blood methanol, blood ethanol and alcohol withdrawal syndrome in humans. Fed. Proc., Abs., 32: 728, 1973.Google Scholar
  14. 14.
    Eriksen, S.P. and Kulkarni, A.B.: Methanol in normal human breath. Science, 141: 639–640, 1963.PubMedCrossRefGoogle Scholar
  15. 15.
    Mani, J.C., Pietruszko, R. and Theorell, H.: Methanol activity of alcohol dehydrogenase from human liver, horse liver and yeast. Arch. Biochem. Biophys., 140: 52–59, 1970.PubMedCrossRefGoogle Scholar
  16. 16.
    Veech, R.L.: The effects of ethanol on the free nucleotide systems and related metabolites in liver and brain. In: Alcohol and Aldehyde Metabolizing Systems. R.G. Thurman, J.R. Williamson, T. Yonetani and B. Chance (eds.), pp. 383–394, Academic Press, New York-London, 1974.Google Scholar
  17. 17.
    Holtz, P., Stock, K. and Westerman, E.: Formation of tetrahydropapaveroline from dopamine in vitro. Nature (London) 203: 656–657, 1964.CrossRefGoogle Scholar
  18. 18.
    Cohen, G. and Collins, M.: Alkaloids from catecholamines in adrenal tissue: Possible role in alcoholism. Science, 167: 1749–1751, 1970.PubMedCrossRefGoogle Scholar
  19. 19.
    McIsaac, W.M.: Formation of 1-methyl-6-methoxy-1,2,3,4-tetrahydro-2-carboline under physiological conditions. Biochim. Biophys. Acta, 52: 607–609, 1961.CrossRefGoogle Scholar
  20. 20.
    Davis, V.E. and Walsh, M.J.: Alcohol, amines and alkaloids. A possible biochemical basis for alcohol addiction. Science, 167: 1005–1007, 1970.PubMedCrossRefGoogle Scholar
  21. 21.
    Walsh, M.J., Davis, V.E. and Yamanaka, Y.: Tetrahydropapaveroline: An alkaloid metabolite of dopamine in vitro. J. Pharmacol. Exp. Therap., 174: 388–400, 1970.Google Scholar
  22. 22.
    Lahti, A.R. and Majchrowicz, E.: Acetaldehyde: An inhibitor of enzymatic oxidation of 5-hydroxyindoleacetaldehyde. Biochem. Pharmacol., 18: 535–538, 1969.PubMedCrossRefGoogle Scholar
  23. 23.
    Feldstein, A., Hoagland, H., Wong, K. and Freeman, H.: Bio-genic amines, biogenic aldehydes and alcohol. Quart. J. Stud. Ale., 25: 218–225, 1964.Google Scholar
  24. 24.
    Davis, V.E., Brown, H., Huff, J.A. and Cashaw, J.L.: The alteration of serotonin metabolism to 5-hydroxytryptophol by ethanol ingestion in man. J. Lab. Clin. Med., 69: 132–140, 1967.PubMedGoogle Scholar
  25. 25.
    Davis, V.E., Brown, H., Huff, J.A. and Cashaw, J.L.: Ethanol-induced alterations of norepinephrine metabolism in man. 69: 787–799, 1967.Google Scholar
  26. 26.
    Ogata, M., Mendelson, J.H., Mello, N.K. and Majchrowicz, E.: Adrenal function and alcoholism. II. Catecholamines. Psychosom. Med., 33: 159–180, 1971.PubMedGoogle Scholar
  27. 27.
    Feldstein, A. and Wong, K.: Enzymatic conversion of serotonin to 5-hydroxytryptophol. Life Sci, 4: 183–191, 1965.CrossRefGoogle Scholar
  28. 28.
    Majchrowicz, E. and Quastel, J.H.: Effects of aliphatic alcohols and fatty acids on the metabolism of acetate by rat liver slices. Can. J. Biochem. Physiol., 39: 1895–1909, 1961.PubMedCrossRefGoogle Scholar
  29. 29.
    Majchrowicz, E. and Quastel, J.H.: Effects of aliphatic alcohols on the metabolism of glucose and fructose in rat liver slices. Can. J. Biochem. Physiol., 41: 793–803, 1963.CrossRefGoogle Scholar
  30. 30.
    Majchrowicz, E.: Effect of ethanol on liver metabolism. Adv. Exp. Med. Biol., M.M. Gross (ed.), 35: 79–104, 1973.Google Scholar
  31. 31.
    Lin, G.W.J.C. and Lester, D.: Dimethylaminoethanol: An improbable substrate in vivo for alcohol dehydrogenase in rat. Biochem. Pharmacol.,In press.Google Scholar
  32. 32.
    Krebs, H.A., Freedland, R.A., Hems, R. and Stubbs, M.: Inhibition of hepatic gluconeogenesis by ethanol. Biochem. J., 112: 117–124, 1969.PubMedGoogle Scholar
  33. 33.
    Leloir, L.F. and ‘Munoz, J.M.: Ethyl alcohol metabolism in animal tissues. Biochem. J., 32: 299–307, 1938.PubMedGoogle Scholar
  34. 34.
    Lundquist, F.: Production and utilization of free acetate in man. Nature, 193: 579–581, 1962.PubMedCrossRefGoogle Scholar
  35. 35.
    Forsander, O. and Räihä, N.: Metabolites produced in the liver during alcohol oxidation. J. Biol. Chem., 235: 34–46, 1960.PubMedGoogle Scholar
  36. 36.
    Seshachalam, D.: Inhibition of hexose monophosphate shunt by ethanol–An experimental evaluation. Biochem. Pharmacol., 21: 2658–2660, 1972.PubMedCrossRefGoogle Scholar
  37. Freinkel, N., Singer, D.L., Arky, R.A., Bleicher, S.J., Anderson, J.B. and Silbert, C.K.: Alcohol hypoglycemia. I. Carbohydrate metabolism of patients with clinical alcohol hypoglycemia and the experimental reproduction of the syndrome with pure ethanol. J. Clin. Invest.,42: 1112–1133, 196Google Scholar
  38. 38.
    Beer, C.T. and Quastel, J.H.: The effects of aliphatic alcohols on the respiration of rat brain cortex slices and rat brain mitochondria. Can. J. Biochem. Physiol., 36: 543–546, 1958.PubMedCrossRefGoogle Scholar
  39. 39.
    Walgren, H.: Effects of ethanol on respiration of rat-braincortex slices. Biochem. J., 75: 150–158, 1960.Google Scholar
  40. 40.
    Majchrowicz, E.: Effects of aliphatic alcohols and aldehydes on the metabolism of potassium-stimulated rat brain cortex slices. Can. J. Biochem., 43: 1041–1051, 1965.PubMedCrossRefGoogle Scholar
  41. 41.
    Majchrowicz, E. and Mendelson, J.H.: Blood concentrations of acetaldehyde and ethanol in chronic alcohols. Science, 168: 1100–1102, 1970.PubMedCrossRefGoogle Scholar
  42. 42.
    Majchrowicz, E.: The concentrations of ethanol and acetaldehyde in blood and brain of alcohol-dependent rats. Proc. Am. Soc. Neurochem., Abs., 4: 113, 1973.Google Scholar
  43. 43.
    Veech, R.L., Guynn, R.H. and Veloso, D.: The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem. J., 127: 387–397, 1972.PubMedGoogle Scholar
  44. 44.
    Veloso, D., Passonneau, J.V. and Veech, R.L.: The effects of intoxicating doses of ethanol upon intermediary metabolism of rat brain. J. Neurochem., 19: 2679–2686, 1972.PubMedCrossRefGoogle Scholar
  45. 45.
    Heim, F.: The influence of alcohols on enzymatic degradation of tyramine. Arch. Exptl. Path. PharmakoZ., 210: 16–22, 1950.Google Scholar
  46. 46.
    Rosenfeld, G.: Inhibitory influence of ethanol on serotonin metabolism. Proc. Soc. Exper. Biol. Med., 103: 144–149, 1960.Google Scholar
  47. 47.
    Rosenfeld, G.: Potentiation of the narcotic action and acute toxicity of alcohol by primary aromatic monoamines. Quart. J. Stud. AZc., 21: 584–596, 1960.Google Scholar
  48. 48.
    Maynard, L.S. and Schenker, V.J.: Monoamine oxidase inhibition by ethanol in vitro. Nature, London, 196: 575–576, 1962.CrossRefGoogle Scholar
  49. 49.
    Towne, J.C.: Effect of ethanol and acetaldehyde on liver and brain monoamine oxidase. Nature, London, 201: 709–710, 1964.CrossRefGoogle Scholar
  50. 50.
    Lahti, R.A. and Majchrowicz, E.: Ethanol and acetaldehyde effects on metabolism and binding of biogenic amines. Quart. J. Stud. Ale., 35: 1–14, 1974.Google Scholar
  51. 51.
    Smith, A.A. and Wortis, S.B.: Formation of tryptophol in the disulfiram-treated rat. Biochem. Biophys. Acta., 40: 569570, 1960.Google Scholar
  52. 52.
    Smith, A.A. and Wortis, S.B.: The effect of disulfiram on the metabolism of norepinephrine-1-C14. Biochem. PharmacoZ., 3: 333–334, 1960.CrossRefGoogle Scholar
  53. 53.
    Raskin, N.K. and Sokoloff, L.: Enzymes catalyzing ethanol metabolism in neural and somatic tissues of the rat. J. Neurochem., 19: 273–282, 1972.PubMedCrossRefGoogle Scholar
  54. 54.
    Truitt, E.B., Jr., Bell, F.K. and Krantz, J.C., Jr.: Effects of alcohols and acetaldehyde on oxidative phosphorylation in brain. Quart. J. Stud. Ale., 17: 594–600, 1956.Google Scholar
  55. 55.
    Grenell, R.G.: Effects of alcohol on the neuron. In: The Biology of Alcoholism, Vol. 2, Physiology and Behavior. B. Kissin and H. Begleiter (eds.), pp. 1–19, Plenum Press, New York-London, 1972.Google Scholar
  56. 56.
    Kalant, H.: Absorption, distribution and elimination of alcohols. Effect on biological membranes. In: The Biology of Alcoholism, Vol. 1, Biochemistry. B. Kissin and H. Begleiter (eds.), pp. 1–102, Plenum Press, New York-London, 1971.Google Scholar
  57. Majchrowicz, E.: Determination of ethanol, methanol and acetone in biological fluids by automated gas chromatography. Am. Chem. Soc., Biol. Chem.,Abst., No. 298, 1971.Google Scholar
  58. 58.
    Roach, M.K. and Creaven, P.J.: A micro-method for the determination of acetaldehyde and ethanol in blood. Clin. Chim. Acta., 21: 275–278, 1968.PubMedCrossRefGoogle Scholar
  59. 59.
    Lundquist, F. and Wolthers, H.: The kinetics of alcohol elimination in man. Acta Pharmacol. Toxicol., 14: 265–289, 1958.CrossRefGoogle Scholar
  60. 60.
    Truitt, E.B., Jr. and Walsh, M.J.: The role of acetaldehyde in the actions of ethanol. In: The Biology of Alcoholism. Vol. 1, Biochemistry, B. Kissin and H. Begleiter (eds.), pp. 161–195, Plenum Press, New York-London, 1971.Google Scholar
  61. 61.
    Sippel, H.W.: Non-enzymatic ethanol oxidation in biological extracts. Acta. Chem. Scand., 27: 541–550, 1973.PubMedCrossRefGoogle Scholar
  62. 62.
    Mendelson, J.H., Stein, S. and Mello, N.K.: Effects of experimentally induced intoxication on metabolism of ethanol-1-C14 in alcoholic subjects. Metabolism, 14: 1255–1266, 1965.PubMedCrossRefGoogle Scholar
  63. 63.
    Kater, R.M., Carulli, N.C. and Iber, F.L.: Differences in the rate of ethanol metabolism in recently drinking alcoholic and non-alcoholic subjects. Am. J. Clin. Nutr., 22: 1608–1617, 1969.PubMedGoogle Scholar
  64. 64.
    Truitt, E.B. Jr.: Ethanol-induced release of acetaldehyde from blood and its effects on the determination of acetaldehyde. Quart. J. Stud. Alc., 31: 1–12, 1970.Google Scholar
  65. 65.
    Sippel, H.W.: Thiourea, an effective inhibitor of the non-enzymatic ethanol oxidation in biological extracts. Acta Chem. Scand., 26: 3398–3400, 1972.PubMedCrossRefGoogle Scholar
  66. 66.
    Majchrowicz, E.: Gas liquid chromatography technique for the analysis of alcohols. In: Effect of Aliphatic Alcohols on Liver Metabolism. E. Majchrowicz, Ph.D. Thesis, pp. 41–51, McGill University, Montreal, Canada, 1959.Google Scholar
  67. 67.
    Duritz, G. and Truitt, E.B. Jr.: A rapid method for simultaneous determination of acetaldehyde and ethanol in blood using gas chromatography. Quart. J. Stud. Alc., 25: 498–510, 1964.Google Scholar
  68. 68.
    Baker, R.N., Alenty, A.L. and Zack, J.F. Jr.: Simultaneous determination of lower alcohols, acetone and acetaldehyde in blood by gas chromatography. J. Chromatogr. Sci., 7: 31 2314, 1969.Google Scholar
  69. 69.
    Majchrowicz, E., Bercaw, B.L., Cole, W.M. and Gregory, D.H.: Nicotinamide adenine dinucleotide and the metabolism of ethanol and acetaldehyde. Quart. J. Stud. Alc., 28: 213–224, 1967.Google Scholar
  70. 70.
    Burbridge, T.N., Hine, C.H. and Schick, A.F.: A simple spectrophotometric method for the determination of acetaldehyde in blood. J. Lab. clin. Med., 35: 983–987, 1950.PubMedGoogle Scholar
  71. 71.
    Eriksson, C.J.P.: Ethanol and acetaldehyde metabolism in rat strains genetically selected for their ethanol preference. Biochem. Pharmacol., 22: 2283–2292, 1973.PubMedCrossRefGoogle Scholar
  72. 72.
    Forsander, O.A. and Sekki, A.: Acetaldehyde and ethanol in the breath of rats after alcohol administration. Med. Biol., 52: 276–280, 1974.PubMedGoogle Scholar
  73. 73.
    Butt, V.S. and Hallaway, M.: The catalysis of ascorbate oxidation by ionic copper and its complexes. Arch. Biochem. Biophys., 92: 24–32, 1961.PubMedCrossRefGoogle Scholar
  74. 74.
    Truitt, E.B. Jr.: Blood acetaldehyde levels after alcohol consumption by alcoholic and non-alcoholic subjects. In: Biological Aspect of Alcohol. M.K. Roach, W.M. Mclsaac and P.J. Creaven (eds.), pp. 212–232, The University of Texas Press, Austin-London, 1971.Google Scholar
  75. 75.
    Freund, G. and D’Hollaren, P.: Acetaldehyde concentrations in alveolar air following a standard dose of ethanol. J. Lip. Res., 6: 471–477, 1965.Google Scholar
  76. 76.
    Eriksson, C.J.P.: Increase inhepatic NAD level–its effect on the redox state and on ethanol and acetaldehyde metabolism. FEBS Letters, 40: 317–320, 1974.PubMedCrossRefGoogle Scholar
  77. 77.
    Mazey, E. and Tobon, F.: Rates of ethanol clearance and activities of the ethanol-oxidizing enzymes in chronic alcoholic patients. Gastroenterology, 61: 707–715, 1971.Google Scholar
  78. 78.
    Redmond, G.P. and Cohen, G.: Sex difference in acetaldehyde exhalation following ethanol administration in C57BL mice. Nature, London, 236: 117–119, 1972.CrossRefGoogle Scholar
  79. 79.
    Sheppard, J.R., Albersheim, P. and McClearn, G.: Aldehyde dehydrogenase and ethanol preference in mice. J. Biol. Chem., 245: 2876–2882, 1970.PubMedGoogle Scholar
  80. 80.
    Lindros, K.O., Vihma, R. and Forsander, 0.A.: Utilization and metabolic effects of acetaldehyde and ethanol in the perfused rat liver. Biochem. J., 126: 945–952, 1972.PubMedGoogle Scholar
  81. 81.
    Lieber, C.S. and DeCarli, L.M.: Hepatic microsomal ethanol-oxidizing system: In vitro characteristics and adaptive properties in vivo. J. Biol Chem., 245: 2505–2512, 1970.Google Scholar
  82. 82.
    Conney, A.H.: Pharmacological implications of microsomal enzymes induction. Pharmacol. Revs., 19: 317–366, 1967.Google Scholar
  83. 83.
    Stotz, E.: A colorimetric determination of acetaldehyde in blood. J. BioZ. Chem., 148: 585–591, 1943.Google Scholar
  84. 84.
    Eriksson, K.: Genetic selection for voluntary alcohol consumption in the albino rat. Science, 159: 739–741, 1968.PubMedCrossRefGoogle Scholar
  85. 85.
    Kiessling, K.H.: The effect of acetaldehyde on rat brain mitochondria and its occurance in brain after alcohol injection. Exper. Cell Res., 26: 432–434, 1962.CrossRefGoogle Scholar
  86. 86.
    Ridge, J.W.: The metabolism of acetaldehyde by the brain in vivo. Biochem. J., 88: 95–100, 1963.Google Scholar
  87. 87.
    Duritz, G. and Truitt, E.B. Jr.: Importance of acetaldehyde in the action of ethanol on brain norepinephrine and 5-hydroxytryptamine. Biochem. Pharmacol., 15: 711–721, 1966.PubMedCrossRefGoogle Scholar
  88. 88.
    Sippel, H.W.: The acetaldehyde content of rat brain during ethanol metabolism. J. Neurochem., 23: 451–452, 1974.PubMedCrossRefGoogle Scholar
  89. 89.
    Majchrowicz, E.: Induction of physical dependence on alcohol and associated metabolic and behavioral changes in the rat. Pharmacologist, Abs., 15: 159, 1973.Google Scholar
  90. 90.
    Lundsgard, E.: Alcohol oxidation in liver. Compt. Rend. Tray. Lab. Carlsberg. Ser. Chim., 22: 333–337, 1938.Google Scholar
  91. 91.
    Majchrowicz, E.: Blood acetate concentrations during experimentally induced ethanol intoxication in alcoholics. Proc. 5th Internat. Congr. Pharmacol., Abs., 146: 1972.Google Scholar
  92. 92.
    Western, 0.C. and Ozburn, E.E.: Methanol and formaldehyde in normal body tissues and fluids. U.S. Naval Med. Bull., 49: 574–575, 1949.Google Scholar
  93. 93.
    McManus, I.R., Contag, A.O. and Olson, R.E.: Characterization of endogenous ethanol in the mammal. Science, 131: 102–103, 1960.PubMedCrossRefGoogle Scholar
  94. 94.
    Axelrod, J. and Daly, J.: Pituitary gland: Enzymatic formation of methanol from S-adenosyl-methionine. Science, 150: 892–893, 1965.PubMedCrossRefGoogle Scholar
  95. 95.
    Rie, O.: The metabolism and toxicity of methanol. Pharmacol. Revs., 17: 399–412, 1955.Google Scholar
  96. 96.
    Cohen, G.: Tetrahydroisoquinoline alkaloids in the adrenal medulla after perfusion with “blood concentrations” of acetaldehyde-C14. Biochem. PharmacoZ., 20: 1757–1761, 1971.CrossRefGoogle Scholar
  97. 97.
    Turner, A.J., Baker, K.M., Algeri, S., Erigerio, A. and Garrattini, S.: Tetrahydropapaveroline: Formation in vivo and in vitro in rat brain. Life Sci, 14: 2247–2257, 1974.CrossRefGoogle Scholar
  98. 98.
    Beer, C.T. and Quastel, J.H.: Effects of aliphatic aldehydes on the respiration of rat brain cortex slices and rat brain mitochondria. Canad. J. Biochem. PhysioZ., 36: 531–542, 1958.CrossRefGoogle Scholar
  99. 99.
    Kalant, H.: Effects of ethanol on the nervous system. In: Alcohols and Derivatives. J. Tremoliers (ed.), pp. 182–236, Pergamon Press, Oxford, 1970.Google Scholar
  100. 100.
    Forsander, O.A.; Räihä, N., Salaspuro, M. and Mäenpää, P.: Influence of ethanol on liver metabolism of fed and starved rats. Biochem. J., 94: 259–265, 1965.Google Scholar
  101. 101.
    Forsander, O.A.: Influence of some aliphatic alcohols on the metabolism of rat liver slices. Biochem. J., 105: 93–97, 1967.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Edward Majchrowicz
    • 1
  1. 1.Laboratory of Alcohol ResearchNational Institute on Alcohol Abuse and AlcoholismUSA

Personalised recommendations