Rate-Limiting Steps in Ethanol Metabolism and Approaches to Changing These Rates Biochemically

  • Bryce V. Plapp
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 56)


Many attempts have been made to increase the rate of metabolism of ethanol, but none has changed the rate more than about two-fold. To understand the reasons for these failures and to develop successful methods, we need to know which steps in ethanol metabolism are “rate-limiting”. These are difficult to determine experimentally because the rates of each step are controlled by the concentrations of several metabolites and the kinetic characteristics of the enzymes involved, and because the fluxes through all steps in a steady-state process are the same. Despite these problems, each step in ethanol metabolism has been said to be the rate-limiting step by someone. Furthermore, it should be noted that the rate of every step affects the overall rate, and there may be peveral slow steps (70).


Alcohol Dehydrogenase Fatty Acid Synthesis Aldehyde Dehydrogenase Ethanol Oxidation Fatty Acid Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeles, R.H. and Lee, H.A., Jr.: The dismutation of formaldehyde by liver alcohol dehydrogenase. J. Biol. Chem., 235: 1499–1503, 1960.PubMedGoogle Scholar
  2. 2.
    Altman, P.L. and Dittmer, D.S. (ed.): Growth, including reproduction and morphological development. Fed. Am. Soc. Exper. BioZ., Washington, D.C., 1962.Google Scholar
  3. 3.
    Barth, C., Sladek, M. and Decker, K.: The subcellular distri-bution of short chain fatty acyl-CoA synthetase activity in rat tissues. Biochim, Biophys. Acta, 248: 24–33, 1971.Google Scholar
  4. 4.
    Berger, D., Berger, M. and von Wartburg, J.P.: Structural studies of human liver alcohol dehydrogenase isoenzymes. Eur. J. Biochem., In press, 1974.Google Scholar
  5. 5.
    Bernstein, J., Videla, L. and Israel, Y.: Metabolic alterations produced in the liver by chronic ethanol administration. Changes related to energetic parameters of the cell. Biochem. J., 134: 515–521, 1973.PubMedGoogle Scholar
  6. 6.
    Berry, M.N., Kun, E. and Werner, H.V.: Regulatory role of reducing-equivalent transfer from substrate to oxygen in the hepatic metabolism of glycerol and sorbitol. Eur. J. Biochem., 33: 407–417, 1973.PubMedCrossRefGoogle Scholar
  7. 7.
    Biellmann, J.F., Branlant, G., Foucaud, B.Y. and Jung, M.J.: Preparation of 3-chloroacetylpyridine adenine dinucleotide: An alkylating analogue of NAD+. FEBS Letters 40: 29–32, 1973.CrossRefGoogle Scholar
  8. 8.
    Björkhem, I.: On the role of alcohol dehydrogenase in w-òxidation of fatty acids. Eur. J. Biochem., 30: 441–451, 1972.PubMedCrossRefGoogle Scholar
  9. 9.
    Blair, A.H. and Bodley, F.H.: Human liver aldehyde dehydrogenase: partial purification and properties. Can. J. Biochem., 47: 265–272, 1969.PubMedGoogle Scholar
  10. 10.
    Blomstrand, R., Carlberger, G. and HolmstrSm, B.: Studies on the metabolism of 14C-labeled ethanol in man. I. The expiratory 14CO2 pattern after the administration of ethanol-1–14C with different carrier doses. Arkiv Kemi, 30: 291–303, 1968.Google Scholar
  11. 11.
    Blomstrand, R. and Öhman, G.: Studies on the metabolism of LADH-inhibitor 4-methylpyrazole in the rat. Life Sci, 13: 107–112, 1973.CrossRefGoogle Scholar
  12. 12.
    Blomstrand, R. and Theorell, H.: Inhibitory effect on ethanol oxidation in man after administration of 4-methylpyrazole. Life Sci, 9: 631–640, 1970.CrossRefGoogle Scholar
  13. 13.
    Brändén, C.I., Eklund, H., Nordstrtm, B., Boiweo, T., SSderlund, G., Zeppezauer, E., Ohisson, I. andó keson, A.: Structure of liver alcohol dehydrogenase at 2.9-A resolution. Proc. Nat. Acad. Sci. USA, 70: 2439–2442, 1973.PubMedCrossRefGoogle Scholar
  14. 14.
    Brooks, R.L. and Shore, J.D.: Effect of substrate structure on the rate of the catalytic step in the liver alcohol dehydrogenase mechanism. Biochemistry, 10: 3855–3858, 1971.PubMedCrossRefGoogle Scholar
  15. 15.
    Bucher, Th., Brauser, B., Conze, A., Klein, F., Langguth, 0. and Sies, H.: State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate/pyruvate in hemoglobin-free perfused rat liver. Eur. J. Biochem., 27: 301–317, 1972.PubMedCrossRefGoogle Scholar
  16. 16.
    Büttner, H.: Aldehyd-and Alkoholdehydrogenase-Aktivität in Leber and Niere der Ratte. Biochem. Z., 341: 300–314, 1965.Google Scholar
  17. 17.
    Capuzzi, D.M., Rothman, V. and Margolis, S.: The regulation of lipogenesis by cyclic nucleotides in intact hepatocytes prepared by a simplified technique. J. Biol. Chem., 249: 1286 1294, 1974.Google Scholar
  18. 18.
    Carpenter, T.M.: The metabolism of alcohol: a review. Quart. J. Stud. Alc., 1: 201–226, 1940.Google Scholar
  19. 19.
    Carpenter, T.M. and Lee, R.C.: The effect of fructose on the metabolism of ethyl alcohol in man. J. Pharmacol. Exp. Ther., 19: 286–295, 1937.Google Scholar
  20. 20.
    Casier, H.: Accumulation of alcohol metabolites in the form of total lipids and fatty acids in the organism: Studies in mice after administration of daily and repeated doses of radioactive ethanol. Quart. J. Stud. Ale., 23: 529–548, 1962.Google Scholar
  21. 21.
    Cederbaum, A.I., Lieber, C.S., Beattie, D.S. and Rubin, E.: Characterization of shuttle mechanisms for the transport of reducing equivalents into mitochondria. Arch. Biochem. Biophys., 158: 763–781, 1973.PubMedCrossRefGoogle Scholar
  22. 22.
    Cederbaum, A.I., Lieber, C.S., Toth, A., Beattie, D.S. and Rubin, E.: Effects of ethanol and fat on the transport of reducing equivalents into rat liver mitochondria. J. Biol. Chem., 248: 4977–4986, 1973.PubMedGoogle Scholar
  23. 23.
    Clark, W.C. and Hulpieu, H.R.: Comparative effectiveness of fructose, dextrose, pyruvic acid and insulin in accelerating the disappearance of ethanol from dogs. Quart. J. Stud. Alc., 19: 47–53, 1958.Google Scholar
  24. 24.
    Cleland, W.W.: The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta, 67: 104–137, 1963.PubMedCrossRefGoogle Scholar
  25. 25.
    Cleland, W.W.: Enzyme kinetics. Annu. Rev. Biochem., 36: 77112, 1967.CrossRefGoogle Scholar
  26. 26.
    Conrad, R.H., Heitz, J.R. and Brand, L.: Characterization of a fluorescent complex between auramine-O and horse liver alcohol dehydrogenase. Biochemistry, 9: 1540–1546, 1970.PubMedCrossRefGoogle Scholar
  27. 27.
    Cronholm, T.: Isotope effects and hydrogen transfer during simultaneous metabolism of ethanol and cyclohexanone in rats. Eur. J. Biochem.,43: 189–196,01974.Google Scholar
  28. 28.
    Dahlbom, R., Tolf, B.R., Xkeson, A., Lundquist, G. and Theorell, H.: On the inhibitory power of some further pyrazole derivatives of horse liver alcohol dehydrogenase. Biochem. Biophys. Res. Commun., 57: 549–553, 1974.PubMedCrossRefGoogle Scholar
  29. 29.
    Dalziel, K.: Thermodynamics and molecular kinetics of liver alcohol dehydrogenase. Acta Chem. Scand., 17: Suppl 1, S27533, 1963.Google Scholar
  30. 30.
    Dalziel, K.: Kinetic studies of liver alcohol dehydrogenase and pH effects with coenzyme preparations of high purity. J. Biol. Chem., 238: 2850–2858, 1963.PubMedGoogle Scholar
  31. 31.
    Damgaard, S.E., Lundquist, F., Tonnesen, K., Hansen, F.V. and Sestoft, L.: Metabolism of ethanol and fructose in the isolated perfused pig liver. Eur. J. Biochem., 33: 87–97, 1973.PubMedCrossRefGoogle Scholar
  32. 32.
    Deitrich, R.A.: Tissue and subcellular distribution of mammalian aldehyde-oxidizing capacity. Biochem. Pharm., 15: 1911 1922, 1966.Google Scholar
  33. 33.
    Deitrich, R.A., Collins, A.C. and Erwin, V.G.: Genetic influence upon phenobarbital-induced increase in rat liver supernatant aldehyde dehydrogenase activity. J. Biol. Chem., 247: 72327236, 1972.Google Scholar
  34. 34.
    Diamant, S., Gorin, E. and Shafrir, E.: Enzyme activities related to fatty-acid synthesis in liver and adipose tissue of rats treated with triiodothyronine. Eur. J. Biochem., 26: 553–559, 1972.PubMedCrossRefGoogle Scholar
  35. 35.
    Dunn, M.F. and Bernhard, S.A,: Rapid kinetic evidence for adduct formation between the substrate analog p-nitroso-N,Ndimethylaniline and reduced nicotinamide-adenine dinucleotide during enzymic reduction. Biochemistry, 10: 45694575, 1971.Google Scholar
  36. 36.
    Edwards, J.A. and Evans, D.A.P.: Ethanol metabolism in subjects possessing typical and atypical liver alcohol dehydrogenase. Clin. Pharmacol. Ther., 8: 824–829, 1967.PubMedGoogle Scholar
  37. 37.
    Erecinska, M., Veech, R.L. and Wilson, D.F.: Thermodynamic relationships between the oxidation-reduction reactions and the ATP synthesis in suspensions of isolated pigeon heart mitochondria. Arch. Biochem. Biophys., 160: 412–421, 1974.PubMedCrossRefGoogle Scholar
  38. 38.
    Eriksson, C.J.P.: Ethanol and acetaldehyde metabolism in rat strains genetically selected for their ethanol preference. Biochem. Pharmacol., 22: 2283–2292, 1973.PubMedCrossRefGoogle Scholar
  39. 39.
    Erigksson, C.J.P.: Increase in hepatic NAD level–Its effect on the redox state and on ethanol and acetaldehyde metabolism. FEBS Letters, 40: 317–320, 1974.CrossRefGoogle Scholar
  40. 40.
    Feldman, R.I. and Weiner, H.: Horse liver aldehyde dehydrogenase I. Purification and characterization. J. Biol. Chem., 247: 260–266, 1972.PubMedGoogle Scholar
  41. 41.
    Feytmans, E. and Leighton, F.: Effects of nyrazole and 3-amino1,2,4-triazole on methanol and ethanol metabolism by the rat. Biochem. Pharmacol., 22: 349–360, 1973.PubMedCrossRefGoogle Scholar
  42. 42.
    Forsander, O.A.: Influence of the metabolism of ethanol on the lactate/pyruvate ratio of rat-liver slices. Biochem. J., 98: 244–247, 1966.PubMedGoogle Scholar
  43. 43.
    Forsander, O.A.: Influence of ethanol and butyraldoxime on liver metabolism. Biochem. Pharmacol., 19: 2131–2136, 1970.PubMedCrossRefGoogle Scholar
  44. 44.
    Forsander, O.A.: Influence of ethanol on the redox state of the liver. Quart. J. Stud. Ala., 31: 550–570, 1970.Google Scholar
  45. 45.
    Forsander, O.A., Räihä, N., Salaspuro, M. and Mäenpää, P.H.: Influence of ethanol on the liver metabolism of fed and starved rats. Biochem. J., 94: 259–265, 1965.Google Scholar
  46. 46.
    Gershman, H. and Abeles, R.H.: Deuterium isotope effects in the oxidation of alcohols in vitro and in vivo. Arch. Biochem. Biophys., 154: 659–674, 1973.CrossRefGoogle Scholar
  47. 47.
    Gilleland, M.J. and Shore, J.D.: Inhibition of horse liver alcohol dehydrogenase by L-3,3’,5-triiodothyronine. J. Biol. Chem., 244: 5357–5360, 1969.PubMedGoogle Scholar
  48. 48.
    Goebell, H. and Bode, Ch.: Influence of ethanol and protein deficiency on the activity of alcohol dehydrogenase in the rat liver. In: Metabolic Changes Induced by Alcohol, G.A. Martini and Ch. Bode (eds.), pp. 23–30, Springer-Verlag, New York, 1971.CrossRefGoogle Scholar
  49. 49.
    Goldberg, L.: The interaction of alcohol and other CNS-acting drugs in man and animal. In: Alcoholism. Modern Concepts of Cause and Therapy, M.H. Saffron (ed.) pp. 6–46, Trans. Acad. Med., New Jersey, 1972.Google Scholar
  50. 50.
    Goldberg, L. and Rydberg, U.: Inhibition of ethanol metabolism in vivo by administration of pyrazole. Biochem. Pharm., 18: 1749–1762, 1969.PubMedCrossRefGoogle Scholar
  51. 51.
    Goldberg, L., Hollstedt, C., Neri, A. and Rydberg, U.: Synergistic action of pyrazole on ethanol incoordination: differential metabolic and central nervous system effects. J. Pharm. Pharmac., 24: 593–601, 1972.CrossRefGoogle Scholar
  52. 52.
    Goodridge, A.G.: Regulation of the activity of acetyl coenzyme-A carboxylase by nalmitoyl coenzyme-A and citrate. J. Biol. Chem., 247: 6946–6952, 1972.PubMedGoogle Scholar
  53. 53.
    Goodridge, A.G.: On the relationship between fatty acid synthesis and the total activities of acetyl coenzyme-A carboxylase and fatty acid synthetase in the liver of prenatal and early postnatal chicks. J. Biol. Chem., 248: 1932–1938, 1973.Google Scholar
  54. 54.
    Goodridge, A.G.: Regulation of fatty acid synthesis in isolated hepatocytes. Evidence for a physiological role for long chain fatty acyl coenzyme-A and citrate. J. Biol. Chem., 248: 43184326, 1973.Google Scholar
  55. 55.
    Grunnet, N.: Oxidation of acetaldehyde by rat-liver mitochondria in relation to ethanol oxidation and the transport of reducing equivalents across the mitochondrial membrane. Eur. J. Biochem., 35: 236–243, 1973.PubMedCrossRefGoogle Scholar
  56. 56.
    Grunnet, N., Quistorff, B. and Thieden, H.I.D.: Rate-limiting factors in ethanol oxidation by isolated rat-liver parenchymal cells. Effect of ethanol concentration, fructose, pyruvate and pyrazole. Eur. J. Biochem., 40: 275–282, 1973.PubMedCrossRefGoogle Scholar
  57. 57.
    Gupta, N.K., Woodley, C.L. and Fried, R.: Effect of metronidazole on liver alcohol dehydrogenase. Biochem. Pharmacol., 19: 2805–2808, 1970.PubMedCrossRefGoogle Scholar
  58. 58.
    Guynn, R.W., Veloso, D., Harris, R.L., Lawson, J.W.R. and Veech, R.L.: Ethanol administration and the relationship of malonyl-coenzyme A concentrations to the rate of fatty acid synthesis in rat liver. Biochem. J., 136: 639–647, 1973.PubMedGoogle Scholar
  59. 59.
    Hawkins, R.D. and Kalant, H.: The metabolism of ethanol and its metabolic effects. Pharm. Rev., 24: 67–157, 1972.PubMedGoogle Scholar
  60. 60.
    Hawkins, R.D., Kalant, H. and Khanna, J.M.: Effects of chronic intake of ethanol on rate of ethanol metabolism. Can. J. Physiol. PharmacoZ., 44: 241–257, 1966.CrossRefGoogle Scholar
  61. 61.
    Heitz, J.R. and Brand, L.: Relation of the auramine-O binding site to the active site of horse liver alcohol dehydrogenase. Biochemistry, 10: 2695–2700, 1971.PubMedCrossRefGoogle Scholar
  62. 62.
    Heldt, H.N., Klingenberg, M. and Milovancer, M.: Differences between the ATP/ADP ratios in the mitochondrial matrix and in the extramitochondrial space. Eur J. Biochem., 30: 434440, 1972.Google Scholar
  63. 63.
    Hillbom, M.E.: Regulation of hepatic elimination of ethanol in vivo. FEBS Letters, 17: 303–305, 1971.CrossRefGoogle Scholar
  64. 64.
    Hillbom, M.E. and Pikkarainen, P.H.: Liver alcohol and sorbitol dehydrogenase activities in hypo-and hyperthyroid rats. Biochem. Pharmacol., 19: 2097–2103, 1970.PubMedCrossRefGoogle Scholar
  65. 64a.
    Hohorst, H.J., Kreutz, F.H. and Bucher, Th.: Ober Metabolitgehalte und Metabolit-Konzentrationen in der Leber der Ratte. Biochem. Z., 332: 18–46, 1959.PubMedGoogle Scholar
  66. 65.
    Holzer, H. and Schneider, S.: Zum Mechanismus der Beeinflussung der Alkohol-oxydation in der Leber durch Fructose. KZin. Wochenschr., 33: 1006–1009, 1955.CrossRefGoogle Scholar
  67. 66.
    Israel, Y., Khanna, J.M. and Lin, R.: Effect of 2,4-dinitrophenol on the rate of ethanol elimination in the rat in vivo. Biochem. J., 120: 447–448, 1970.Google Scholar
  68. 67.
    Israel, Y., Videla, L., MacDonald, A. and Bernstein, J.: Metabolic alterations produced in the liver by chronic ethanol administration. Comparison between the effects produced by ethanol and by thyroid hormones. Biochem. J., 134: 523529, 1973.Google Scholar
  69. 68.
    Johannsmeier, K., Redetzki, H. and Pfleiderer, G.: Zur Frage der Beschleunigung des Blutalkoholabbaus. KZin. Wochenschr., 32: 560–563, 1954.CrossRefGoogle Scholar
  70. 69.
    Kähönen, M.T., Ylikahri, R.H. and Hassinen, I.: Ethanol metabolism in rats treated with ethyl a-p-chlorophenoxyisobutyrate (clofibrate). Life Sci, 10: Part II, 661–670, 1971.Google Scholar
  71. 70.
    Kaiser, H. and Burns, J.A.: The control of flux. In: Rate Control of Biological Processes. D.D. Davies (ed.), Symp. Soc. Exp. BioZ., (G.B.), 27: 56–104, University Press, Cambridge, 1973.Google Scholar
  72. 71.
    Kalant, H.: Absorption, diffusion, distribution and elimination of ethanol: Effects on biological membranes. In: The Biology of Alcoholism Vol. I, B. Kissin and H. Begleiter (eds.), pp. 1–62, Plenum Press, New York, 1971.Google Scholar
  73. 72.
    Khouw, L.B., Burbridge, T.N. and Sutherland, V.C.: The inhibition of alcohol dehydrogenase. 1. Kinetic studies. Biochim. Biophys. Acta, 73: 173–185, 1963.PubMedCrossRefGoogle Scholar
  74. 73.
    Kiessling, K.H. and Pilström, L.: Cytochrome c stimulated oxidation of ethanol by liver mitochondria. Biochem. Pharmacol., 22: 2229–2235, 1973.PubMedCrossRefGoogle Scholar
  75. 74.
    Koe, B.K. and Tenen, S.S.: Inhibiting action of n-butyraldoxime on ethanol metabolism and on natural ethanol preference in C57BL mice. J. PharmacoZ. Exp. Ther., 174: 434–449, 1970.Google Scholar
  76. 75.
    Kondrup, J. and Grunnet, N.: The effect of acute and prolonged ethanol treatment on the contents of coenzyme-A, carnitine and their derivatives in rat liver. Biochem. J., 132: 373379, 1973.Google Scholar
  77. 76.
    Kraemer, R.J. and Deitrich, R.A.: Isolation and characterization of human liver aldehyde dehydrogenase. J. BioZ. Chem., 243: 6402–6408, 1968.Google Scholar
  78. 77.
    Krebs, H.A.: The role of equilibria in the regulation of metabolism. Curr. Topics Cellul. Regln, 1: 45–55, 1969.Google Scholar
  79. 78.
    Krebs, H.A., Freedland, R.A., Hems, R. and Stubbs, M.: Inhibition of hepatic gluconeogenesis by ethanol. Biochem. J., 112: 117–124, 1969.PubMedGoogle Scholar
  80. 79.
    Krebs, H.A., Hems, R. and Lund, P.: Accumulation of amino acids by the perfused rat liver in the presence of ethanol. Biochem. J., 134: 697–705, 1973.PubMedGoogle Scholar
  81. 80.
    Krebs, H.A. and Perkins, J.R.: The physiological role of liver alcohol dehydrogenase. Biochem. J., 118: 635–644, 1970.PubMedGoogle Scholar
  82. 81.
    Krebs, H.A. and Veech, R.L.: Regulation of the redox state of the pyridine nucleotides in rat liver. In: Pyridine Nucleotide Dependent Dehydrogenases. H.’Sund (ed.), pp. 413–434, Springer-Verlag, Berlin, 1970.Google Scholar
  83. 82.
    Lelbach, W.K.: Experimental hepatocellular necrosis induced by ethanol after partial inhibition of liver alcohol dehydrogenase. In: Metabolic Changes Induced by Alcohol. G.A. Martini and C.H. Bode (eds.), pp. 62–69, Springer-Verlag, New York, 1971.CrossRefGoogle Scholar
  84. 83.
    Lester, D. and Benson, G.D.: Alcohol oxidation in rats inhibited by pyrazole, oximes and amides. Science, 169: 28 2284, 1970.Google Scholar
  85. 84.
    Lester, D. and Keokosky, W.Z.: Alcohol metabolism in the horse. Life Sci, 6: 2313–2319, 1967.CrossRefGoogle Scholar
  86. 85.
    Lester, D., Keokosky, W.Z. and Felzenberg, F.: Effect of pyrazoles and other compounds on alcohol metabolism. Quart. J. Stud. Ale., 29: 449–454, 1968.Google Scholar
  87. 86.
    Lewis, W. and Schwartz, L.: An occupational agent (n-butyraldoxime) causing reaction to alcohol. Med. Ann. D.C. (Washington), 25: 485–490, 1956.Google Scholar
  88. 87.
    Li, T.K. and Theorell, H.: Human liver alcohol dehydrogenase: Inhibition by pyrazole and pyrazole analogs. Acta Chem. Scand., 23: 892–902, 1969.PubMedCrossRefGoogle Scholar
  89. 88.
    Lieber, C.S. and DeCarli, L.M.: The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J. Pharm. Exp. Ther., 181: 279–287, 1972.Google Scholar
  90. 89.
    Lieber, C.S., Rubin, E., DeCarli, L.M., Misra, P. and Gang, H.: Effects of pyrazole on hepatic function and structure. Lab. Invest., 22: 615–621, 1970.PubMedGoogle Scholar
  91. 90.
    Lieber, C.S. and Schmid, R.: The effect of ethanol on fatty acid metabolism: Stimulation of hepatic fatty acid synthesis in vitro. J. Clin. Invest., 40: 394–399, 1961.CrossRefGoogle Scholar
  92. 91.
    Lindros, K.O.: Role of the redox state in ethanol-induced suppression of citrate-cycle flux in the perfused liver of normal, hyper, and hypothyroid rats. Eur. J. Biochem., 26: 338–346, 1972.PubMedCrossRefGoogle Scholar
  93. 92.
    Lindros, K.O., Vihma, R. and Forsander, 0.A.: Utilization and metabolic effects of acetaldehyde and ethanol in the perfused rat liver. Biochem. J., 126: 945–952, 1972.PubMedGoogle Scholar
  94. 93.
    Loomis, T.A.: A study of the rate of metabolism of ethyl alcohol with special reference to certain factors reported as influencing this rate. Quart. J. Stud. Ale., 11: 527–537, 1950.Google Scholar
  95. 94.
    Lubin, M. and Westerfeld, W.W.: The metabolism of acetaldehyde. J. Biol. Chem., 161: 503–512, 1945.PubMedGoogle Scholar
  96. 95.
    Lundquist, F.: The metabolism of alcohol. In: Biological Basis of Alcoholism. Y. Israel and J. Mardones (eds.), pp. 1–52, Wiley-Interscience, New York, 1971.Google Scholar
  97. 96.
    Lundquist, F., Svendsen, I. and Petersen, P.H.: The metabolism of ethanol in rat-liver suspensions. Biochem. J., 86: 119124, 1963.Google Scholar
  98. 97.
    Lundquist, F., Tygstrup, N., Winkler, K., Mellemgaard, K. and Munck-Petersen, S.: Ethanol metabolism and production of free acetate in the human liver. J. Clin. Invest., 41: 955961, 1962.Google Scholar
  99. 98.
    Lundquist, F. and Wolthers, H.: The kinetics of alcohol elimination in man. Acta Pharmacol. Toxicol., 14: 265–289, 1958.CrossRefGoogle Scholar
  100. 99.
    Lundquist, F. and Wolthers, H.: The influence of fructose on the kinetics of alcohol elimination in man. Acta Pharmacol. Toxicol., 14: 290–294, 1958.CrossRefGoogle Scholar
  101. 100.
    Lundsgaard, E.: Alcohol oxidation as a function of the liver. Compt. R. Tray. Lab. Carlsberg, 22: 333–337, 1938.Google Scholar
  102. 101.
    Lutstorf, U.M., Schürch, P.M. and von Wartburg, J.P.: Heterogeneity of horse liver alcohol dehydrogenase. Purification and characterization of multiple molecular forms. Eur. J. Biochem., 17: 497–508, 1970.PubMedCrossRefGoogle Scholar
  103. 102.
    Majchrowicz, E.: Failure of ethanol to stimulate incorporation of acetate-1–14C into hepatic fatty acids in vitro. Proc. Soc. Exp. Biol. Med., 115: 615–617, 1964.Google Scholar
  104. 103.
    Majchrowicz, E.: Effects of ethanol on liver metabolism. In: Alcohol Intoxication and Withdrawal. M.M. Gross (ed.), Adv. Exper. Med. Biol., 35: 79–104, Plenum Publishing Company, New York, 1973.Google Scholar
  105. 104.
    Majchrowicz, E., Bercaw, B.L., Cole, W.M. and Gregory, D.H.: Nicotinamide adenine dinucleotide and the metabolism of ethanol and acetaldehyde. Quart. J. Stud. Ale., 28: 213224, 1967.Google Scholar
  106. 105.
    Majchrowicz, E., Lipton, M.A., Meek, J.L. and Hall, L.: Effects of chronic ethanol consumption on the clearance of acutely administered ethanol and acetaldehyde from blood in rats. Quart. J. Stud. Ale., 29: 553–557, 1968.Google Scholar
  107. 106.
    Majchrowicz, E. and Mendelson, J.H.: Blood concentrations of acetaldehyde and ethanol in chronic alcoholics. Science, 168: 1100–1102, 1970.PubMedCrossRefGoogle Scholar
  108. 107.
    Majchrowicz, E. and Mendelson, J.H.: Blood methanol concentrations during experimentally induced ethanol intoxication in alcoholics. J. Pharmacol. Exp. Ther., 179: 293–300, 1971.PubMedGoogle Scholar
  109. 108.
    Majchrowicz, E. and Quastel, J.H.: Effects of aliphatic alcohols and fatty acids on the metabolism of acetate by rat liver slices. Can. J. Biochem. Physiol., 39: 1895–1909, 1961.PubMedCrossRefGoogle Scholar
  110. 109.
    Majchrowicz, E. and Quastel, J.H.: Effects of aliphatic alcohols on the metabolism of glucose and fructose in rat liver slices. Can. J. Biochem. Physiol., 41: 793–803, 1963.CrossRefGoogle Scholar
  111. 110.
    Makar, A.B. and Mannering, G.J.: Kinetics of ethanol metabolism in the intact rat and monkey. Biochem. Pharmacol., 19: 2017–2022, 1970.PubMedCrossRefGoogle Scholar
  112. 111.
    Makar, A.B., Tephly, T.R. and Mannering, G.J.: Methanol metabolism in the monkey. Mol. Pharmacol., 4: 471–483, 1968.PubMedGoogle Scholar
  113. 112.
    Marjanen, L.: Intracellular localization of aldehyde dehydrogenase in rat liver. Biochem. J., 127: 633–639, 1972.PubMedGoogle Scholar
  114. 113.
    Marjanen, L.A.: Comparison of aldehyde dehydrogenases from cytosol and mitochondria of rat liver. Biochim. Biophys. Acta, 327: 238–246, 1973.PubMedGoogle Scholar
  115. 114.
    McCarthy, K. and Lovenberg, W.: The interaction of triiodothyroacetic acid with horse liver alcohol dehydrogenase. J. BioZ. Chem., 244: 3760–3765, 1969.Google Scholar
  116. 115.
    Meijer, A.J. and Williamson, J.R.: Transfer of reducing equivalents across the mitochondrial membrane. I. Hydrogen transfer mechanisms involved in the reduction of pyruvate to lactate in isolated liver cells. Biochim. Biophys. Acta, 333: 1–11, 1974.PubMedCrossRefGoogle Scholar
  117. 116.
    Moser, K., Papenberg, J. and von Wartburg, J.P.: Heterogenität and Organverteilung der Alkoholdehydrogenase bei verschiedenen Spezies. Enzym. BioZ. Clin., 9: 447–458, 1968.Google Scholar
  118. 117.
    Mourad, N. and Woronick, C.L.: Crystallization of human liver alcohol dehydrogenase. Arch. Biochem. Biophys., 121: 43 1439, 1967.Google Scholar
  119. 118.
    Murphy, R.C. and Watkins, W.D.: Pharmacology of pyrazoles. I: Structure elucidation of metabolites of 4-methylpyrazole. Biochem. Biophys. Res. Commun., 49: 283–291, 1972.PubMedCrossRefGoogle Scholar
  120. 119.
    Murthy, V.K. and Steiner, G.: Hepatic Acetic Thiokinase: Possible regulatory step in lipogenesis. Metabolism, 21: 213–221, 1972.PubMedCrossRefGoogle Scholar
  121. 120.
    Nordmann, R., Ribiere, C., Rouach, H., Beauge, F., Giudicelli, Y. and Nordmann, J.: Metabolic pathways involved in the oxidation of isopropanol into acetone by the intact rat. Life Sci, 13: 919–932, 1973.CrossRefGoogle Scholar
  122. 121.
    Nyberg, A., Schuberth, J. and Änggâxd, L.: On the intracellular distribution of catalase and alcohol dehydrogenase in horse, guinea pig and rat liver tissues. Acta Chem. Scand., 7: 1170–1172, 1953.CrossRefGoogle Scholar
  123. 122.
    Palmieri, F., Prezioso, G., Quagliariello, E. and Klingenberg, M.: Kinetic study of the dicarboxylic carrier in rat liver mitochondria. Eur. J. Biochem., 22: 66–74, 1971.PubMedCrossRefGoogle Scholar
  124. 123.
    Papenberg, J.: Ethanol metabolism of the isolated perfused rat liver. 1. Effect of ethanol oxidation on substrate levels. 2. Effects of fructose and pyrazole on ethanol oxidation. In: Metabolic Changes Induced by Alcohol. G.A. Martini and Ch. Bode (eds.), pp. 53–61, Springer-Verlag, New York, 1971.Google Scholar
  125. 124.
    Pietruszko, R, Crawford, K. and Lester, D.: Comparison of substrate specificity of alcohol dehydrogenases from human liver, horse liver and yeast towards saturated and 2-enoic alcohols and aldehydes. Arch. Biochem. Biophys., 159: 50–60, 1973.PubMedCrossRefGoogle Scholar
  126. 125.
    Pietruszko, R., Theorell, H. and deZalenski, C.: Heterogeneity of alcohol dehydrogenase from human liver. Arch. Biochem. Biophys., 153: 279–293, 1972.PubMedCrossRefGoogle Scholar
  127. 126.
    Plapp, B.V.: Enhancement of the activity of horse liver alcohol dehydrogenase by modification of amino groups at the active sites. J. Biol. Chem., 245: 1727–1735, 1969.Google Scholar
  128. 127.
    Plapp, B.V.: Activation of horse liver alcohol dehydrogenase by chemical modification of amino groups. In: Alcohol and Aldehyde Metabolizing Systems. R.G. Thurman, T. Yonetani, J.R. Williamson and B. Chance (eds.), pp. 91–100, Academic Press, New York, 1974.Google Scholar
  129. 128.
    Plapp, B.V., Brooks, R.L. and Shore, J.D.: Horse liver alcohol dehydrogenase. Amino groups and rate-limiting steps in catalysis. J. Biol. Chem., 248: 3470–3475, 1973.PubMedGoogle Scholar
  130. 129.
    Pletscher, A., Bernstein, A. and Staub, H.: Zur Beeinflussung der Umsatzgeschwindigkeit des Alkohols. 1. Die Beschleunigung des oxydativen Alkoholabbaus durch Fructose. Rely. Physiol. Acta, 10: 74–83, 1952.Google Scholar
  131. 130.
    Pletscher, A., Fahrländer, H. and Staub, H.: Zum Kohlenhydratstoffwechsel. 3. Fructoseumsatz bei Gesunden, Diabetikern and Leberkranken. Hell). Physiol. Acta, 9: 46–54, 1951.Google Scholar
  132. 131.
    Räihä, N.C.R. and Koskinen, M.S.: Effect of a non-ionic surface active substance on the activation of alcohol dehydrogenase of rat liver homogenates. Life Sci, 3: 1091–1095, 1964.CrossRefGoogle Scholar
  133. 132.
    Rawat, A.K.: Effects of ethanol infusion on the redox state and metabolite levels in rat liver in vivo. Eur. J. Biochem., 6: 585–592, 1968.CrossRefGoogle Scholar
  134. 133.
    Rawat, A.K. and Kuriyama, K.: Contribution of “substrate shuttles” in the transport of extramitochondrial reducing equivalents by hepatic mitochondria from chronic alcohol-fed mice. Arch. Biochem. Biophys., 152: 44–52, 1972.PubMedCrossRefGoogle Scholar
  135. 134.
    Rawat, A.K. and Lundquist, F.: Influence of thyroxine on the metabolism of ethanol and glycerol in rat liver slices. Eur. J. Biochem., 5: 13–17, 1968.PubMedCrossRefGoogle Scholar
  136. 135.
    Redetzki, H.M.: Alcohol-aldehyde transhydrogenation with liver alcohol dehydrogenase. Texas Rep. Biol. Med., 18: 83–92, 1960.Google Scholar
  137. 136.
    Reynier, M.: Pyrazole inhibition and kinetic studies of ethanol and retinol oxidation catalyzed by rat liver alcohol dehydrogenase. Acta Chem. Scand., 23: 1119–1129, 1969.PubMedCrossRefGoogle Scholar
  138. 137.
    Reynier, M.: Etude de l’inhibition de l’alcool déshydrogénase du foie par le pyrazole. I. Effet sur le métabolisme de l’éthanol et de l’alcool phényl-2-éthylique in vivo. Agressologie, 11: 401–406, 1970.Google Scholar
  139. 138.
    Reynolds, C.H., Morris, D.L. and McKinley-McKee, J.S.: Complexes of liver alcohol dehydrogenase. Further studies on the rate of inactivation. Eur. J. Biochem., 14: 14–26, 1970.PubMedCrossRefGoogle Scholar
  140. 139.
    Rubin, E., Gang, H. and Lieber, C.S.: Interaction of ethanol and pyrazole with hepatic microsomes. Biochem. Biophys. Res. Commun., 42: 1–8, 1971.PubMedCrossRefGoogle Scholar
  141. 140.
    Rydberg, U.: Inhibition of ethanol metabolism in vivo by 4iodo-pyrazole. Biochem. Pharmacol., 18: 2425–2428, 1969.PubMedCrossRefGoogle Scholar
  142. 141.
    Rydberg, U., Buijten, J. and Neri, A.: Kinetics of some pyrazole derivatives in the rat. J. Pharm. Pharmac., 24: 65 1652, 1972.Google Scholar
  143. 142.
    Rydberg, U. and Neri, A.: 4-Methylpyrazole as an inhibitor of ethanol metabolism: differential metabolic and central nervous effects. Acta Pharmacol. Toxicol., 31: 421–432, 1972.CrossRefGoogle Scholar
  144. 143.
    Sarma, R.H. and Woronick, C.L.: Electronic, hydrophobic, and steric effects of binding of inhibitors to horse liver alcohol dehydrogenase-reduced pyridine coenzyme binary complex. Biochemistry, 11: 170–179, 1972.PubMedCrossRefGoogle Scholar
  145. 144.
    Sheppard, J.R., Albersheim, P. and McClearn, G.: Aldehyde dehydrogenase and ethanol preference in mice. J. Biol. Chem., 245: 2876–2882, 1970.PubMedGoogle Scholar
  146. 145.
    Shrago, E., Glennon, J.A. and Gordon, E.S.: Comparative aspects of lipogenesis in mammalian tissues. Metabolism, 20: 54–62, 1971.PubMedCrossRefGoogle Scholar
  147. 146.
    Shum, G.T. and Blair, A.H.: Aldehyde dehydrogenases in rat liver. Can. J. Biochem., 50: 741–748, 1972.PubMedCrossRefGoogle Scholar
  148. 147.
    Siew, C., Deitrich, R.A. and Erwin, V.G.: The localization, purification and properties of rat liver mitochondrial aldehyde dehydrogenases. Fed. Proc., 33: 538, 1974.Google Scholar
  149. 148.
    Sigman, D.S. and Glazer, A.N.: The site of auramine 0 binding to horse liver alcohol dehydrogenase. J. Biol. Chem., 247: 334–341, 1972.PubMedGoogle Scholar
  150. 149.
    Smith, M.E. and Newman, H.W.: The rate of ethanol metabolism in fed and fasting animals. J. Biol. Chem., 234: 1544 1549, 1959.Google Scholar
  151. 150.
    Stokes, P.E. and Lasley, B.: Further studies on blood alcohol kinetics in man as affected by thyroid hormones, insulin and d-glucose. In: Biochemical Factors in Alcoholism. R.P. Maickel (ed.), pp. 101–114, Pergamon Press, Oxford, 1967.Google Scholar
  152. 151.
    Stubbs, M., Veech, R.L. and Krebs, H.A.: Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm. Biochem. J., 126: 59–65, 1972.PubMedGoogle Scholar
  153. 152.
    Stuhlfauth, K. and Neumaier, H.: Die Wirkung der Laevulose auf Alkohol-intoxikationen. Med. KZin., 46: 591–593, 1951.Google Scholar
  154. 153.
    Theorell, H., Chance, B., Yonetani, T. and Oshino, N.: The combustion of alcohol and its inhibition by 4-methylpyrazole in perfused rat livers. Arch. Biochem. Biophys., 151: 434444, 1972.Google Scholar
  155. 154.
    Thieden, H.I.D., Grunnet, N., Damgaard, S.E. and Sestoft, L.: Effect of fructose and glyceraldehyde on ethanol metabolism in human liver and in rat liver. Eur. J. Biochem., 30: 250–261, 1972.PubMedCrossRefGoogle Scholar
  156. 155.
    Thieden, H.I.D. and Lundquist, F.: The influence of fructose and its metabolites on ethanol metabolism in vitro. Biochem. J., 102: 177–180, 1967.Google Scholar
  157. 156.
    Tokuma, Y. and Terayama, H.: Isolation of carcinogenic aminoazo dye-binding protein and its identification as alcohol dehydrogenase. Biochem. Biophys. Res. Corrirnun., 54: 34 1349, 1973.Google Scholar
  158. 157.
    Tygstrup, N., Winkler, K. and Lundquist, F.: The mechanism of the fructose effect on the ethyl alcohol metabolism of the human liver. J. Clin. Invest., 44: 817–830, 1965.PubMedCrossRefGoogle Scholar
  159. 158.
    Van Harken, D.R. and Mannering, G.J.: Ethanol metabolism in the isolated, perfused rat liver. Biochem. Pharmacol., 18: 2759–2766, 1969.PubMedCrossRefGoogle Scholar
  160. 159.
    Vendsborg, P.B. and Schambye, P.: The influence of 2,4-dinitrophenol on metabolic changes caused by ethanol in the per-fused rat liver. Acta Pharmacol. Toxicol., 28: 113–123, 1970.CrossRefGoogle Scholar
  161. 160.
    Videla, L., Bernstein, J. and Israel, Y.: Metabolic alterations produced in the liver by chronic ethanol administration. Increased oxidative capacity. Biochem. J., 134: 507514, 1973.Google Scholar
  162. 161.
    Videla, L. and Israel, Y.: Factors that modify the metabolism of ethanol in rat liver and adaptive changes produced by its chronic administration. Biochem. J., 118: 275–281, 1970.PubMedGoogle Scholar
  163. 162.
    von Wartburg, J.P.: The metabolism of alcohol in normals and alcoholics: enzymes. In: The Biology of Alcoholism. B. Kissin and H. Begleiter (eds.), Vol. I, pp. 63–102, Plenum Press, New York, 1971.Google Scholar
  164. 163.
    von Wartburg, J.P., Papenberg, J. and Aebi, H.: An atypical human alcohol dehydrogenase. Can. J. Biochem., 43: 889898, 1965.Google Scholar
  165. 164.
    Wallgren, H. and Barry, H. III.: Actions of Alcohol, Vol. I, Biochemical, Physiological and Psychological Effects., pp. 35–153, Elsevier Publishing Co., Amsterdam, 1970.Google Scholar
  166. 165.
    Westerfeld, W.W.: The metabolism of alcohol. Texas Rep. Biol. Med., 13: 559–577, 1955.Google Scholar
  167. 166.
    Westerfeld, W.W.: The intermediary metabolism of alcohol. Am. J. Clin. Nutr., 9: 426–431, 1961.PubMedGoogle Scholar
  168. 167.
    Westerfeld, W.W., Stotz, E. and Berg, R.L.: The coupled oxidation-reduction of alcohol and pyruvate in vivo. J. Biol. Chem., 149: 237–243, 1943.Google Scholar
  169. 168.
    Williamson, J.R., Jakob, A. and Refino, C.: Control of the removal of reducing equivalents from the cytosol in perfused rat liver. J. Biol. Chem., 246: 7632–7641, 1971.PubMedGoogle Scholar
  170. 169.
    Williamson, J.R., Ohkawa, K. and Meijer, A.J.: Regulation of ethanol oxidation in isolated rat liver cells. In: Alcohol and Aldehyde Metabolizing Systems. R.G. Thurman, T. Yonetani, J.R. Williamson and B. Chance (eds.), pp. 365–381, Academic Press, New York, 1974.Google Scholar
  171. 170.
    Williamson, J.R., Scholz, R. and Browning, E.T.: Control mechanisms of gluconeogenesis and ketogenesis. II. Interactions between fatty acid oxidation and the citric acid cycle in perfused rat liver. J. BioZ. Chem., 244: 46174627, 1969.Google Scholar
  172. 171.
    Williamson, J.R., Scholz, R., Browning, E.T., Thurman, R.G. and Fukami, M.H.: Metabolic effects of ethanol in perfused rat liver. J. Biol. Chem., 244: 5044–5054, 1969.PubMedGoogle Scholar
  173. 172.
    Wilson, E.C.: Ethanol metabolism in mice with different levels of hepatic alcohol dehydrogenase. In: Biochemical Factors in Alcoholism. R.P. Maickel (ed.), pp. 115–124, Pergamon Press, Oxford, 1967.Google Scholar
  174. 173.
    Wilson, W.L. and Bottiglieri, N.G.: Phase I studies with pyrazole. Cancer Chemotherapy Reports, No. 21: 137–141, 1962.Google Scholar
  175. 174.
    Winer, A.D. and Theorell, H.: Dissociation constants of ternary complexes of fatty acids and fatty acid amides with horse liver alcohol dehydrogenase-coenzyme complexes. Acta Chem. Scand., 14: 1729–1742, 1960.CrossRefGoogle Scholar
  176. 175.
    Woenckhaus, C. and Jeck, R.: Spezifischer Einbau des Coenzymanalogen Nicotinamid-[5-(bromacetyl)-4-methylimidazol]dinucleotid in die Alkohol-Dehydrogenase aus Leber. Z. PhysioZ. Chem., 352: 1417–1423, 1971.Google Scholar
  177. 176.
    Woenckhaus, C., Schättle, E., Jeck, R. and Berghäuser, J.: Spezifische Modifizierung der Coenzymbindungsstelle von Dehydrogenasen mit dem NAD-ähnlichen Inaktivator [3-(4Bromacetylpyridinio)propyl]-adenosinpyrophosphat. Z. Physiol. Chem., 353: 559–564, 1972.CrossRefGoogle Scholar
  178. 177.
    Woenckhaus, C., Zoltobrocki, M. and Berghäuser, J.: Coenzymähnliche Inaktivatoren für Alkohol-Dehydrogenasen aus Hefe und Leber. Z. Physiol. Chem., 351: 1441–1448, 1970.CrossRefGoogle Scholar
  179. 178.
    Woodley, C.L. and Gupta, N.K.: Coupled oxidoreductase activity of horse liver alcohol dehydrogenase. Arch. Biochem. Biophys., 148: 238–248, 1972.PubMedCrossRefGoogle Scholar
  180. 179.
    Yonetani, T. and Theorell, H.: Studies on liver alcohol dehydrogenase complexes. III. Multiple inhibition kinetics in the presence of two competitive inhibitors. Arch. Biochem. Biophys., 106: 243–251, 1964.PubMedCrossRefGoogle Scholar
  181. 180.
    Zoltobrocki, M., Kim, J.C. and Plapp, B.V.: Activity of liver alcohol dehydrogenase with various substituents on the amino groups. Biochemistry, 13: 899–903, 1974.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Bryce V. Plapp
    • 1
  1. 1.Department of Biochemistry, College of MedicineThe University of IowaUSA

Personalised recommendations