Formation of Aberrant Neurotransmitters and Its Implication for Alcohol Addiction and Intoxication

  • Spyridon G. A. Alivisatos
  • Ramesh C. Arora
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 56)


The non- specific amine substitution in nerve- endings has been most clearly expressed in the concept of “false adrenergic transmitters” (1,2). This concept has been explored in detail by Kopin (3,4). The major criteria to identify false transmitters (3) are similar to those for transmitters per se (5).


Biogenic Amine Isoquinoline Alkaloid Synaptosomal Membrane Lysyl Residue Amine Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlsson, A. and Lindqvist, M.: In vivo decarboxylation of alpha-methyl-dopa and alpha-methyl tyrosine. Acta Physiol. Scand., 54: 87–94, 1962.PubMedCrossRefGoogle Scholar
  2. 2.
    Day, M.D. and Rand, M.J.: Awakening from reserpine sedation by alpha-methyl-dopa. J. Pharm. Pharmacol., 15: 631–632, 1963.PubMedCrossRefGoogle Scholar
  3. 3.
    Kopin, I.J.: False adrenergic transmitters. Ann. Rev. Pharmacol., 10: 377–394, 1968.CrossRefGoogle Scholar
  4. 4.
    Kopin, I.J.: Unnatural amino acids as precursors of false transmitters. Fed. Proc., 30: 904–907, 1971.PubMedGoogle Scholar
  5. 5.
    Alivisatos, S.G.A. and Seth, P.K.: Current approaches in the study of receptors in the CNS. In: Methods in Neurochemistry, R. Fried, (ed.), Marcel Dekker, Inc, 2: 205–273, 1971.Google Scholar
  6. 6.
    Muscholl, E. and Maitre, L.: Release by sympathetic stimulation of a-methyl noradrenaline stored in heart after administration of a-methyldopa. Experientia, 19: 658–659, 1963.PubMedCrossRefGoogle Scholar
  7. 7.
    Cohen, G.: Tetrahydroisoquinoline alkaloids, uptake, storage and secretion by the adrenal medulla and by adrenergic nerves. In: Alcoholism and the Central Nervous System. F.A. Seixas and Suzie Eggleston, (eds.), Ann. N.Y. Acad. Sci., 215: 116119, 1973.Google Scholar
  8. 8.
    Mclsaac, W.M.: Formation of 1-methyl-6-methoxy 1,2,3,4-tetrahydro-2-carboline under physiological conditions. Biochim. Biophys. Acta, 52: 607–609, 1961.CrossRefGoogle Scholar
  9. 9.
    Dajani, R.M. and Saheb, S.E.: A further insight into the metabolism of certain ß-carbolines. In: Alcoholism and the Central Nervous System. Frank A. Seixas and Suzie Eggleston, (eds.), Ann. N.Y. Acad. Sci., 215: 120–123, 1973.Google Scholar
  10. 10.
    Murphy, D.L.: Amine precursors, amines and false neurotransmitters in depressed patients. Amer. J. Psychiat., 129: 141–148, 1972.PubMedGoogle Scholar
  11. 11.
    Davis, V.E. and Walsh, M.J.: Alcohol, amines and alkaloids: A possible biochemical basis for alcohol addiction. Science, 167: 1005–1007, 1970.PubMedCrossRefGoogle Scholar
  12. 12.
    Davis, V.E.: Neuroamine-derived alkaloids: A possible common denominator in alcoholism and related drug dependencies. In: Alcoholism and the Central Nervous System. Frank A. Seixas and Suzie Eggleston, (eds.), Ann. N.Y. Acad. Sci., 215: 111115, 1973.Google Scholar
  13. 13.
    Cohen, G. and Collins, M.: Alkaloids from catecholamines in adrenal tissue: Possible role in alcoholism. Science, 167: 1749–1751, 1970.PubMedCrossRefGoogle Scholar
  14. 14.
    Alivisatos, S.G.A., Ungar, F., Callaghan, 0.H., L.vitt, L.P. and Tabakoff, B.: Inhibition of the formation of tetrahydroisoquinoline alkaloids in brain homogenates. Canad. J. Biochem., 51: 28–38, 1973.Google Scholar
  15. 15.
    Walsh, M.J.: Biogenesis of biologically active alkaloids from amines by alcohol and acetaldehyde. In: Alcoholism and the Central Nervous System. Frank A. Seixas and Suzie Eggleston, (eds.), Ann. N.Y. Acad. Sci., 215: 98–110, 1973.Google Scholar
  16. 16.
    Leete, E.: The biogenesis of morphine. J. Amer. Chem. Soc., 81: 3948–3951, 1959.CrossRefGoogle Scholar
  17. 17.
    Battersby, A.R.: Alkaloid biosynthesis. Quart. Rev., 15: 259286, 1961.Google Scholar
  18. 18.
    Kirby, G.W.: Biosynthesis of the morphine alkaloids. Science, 155: 170–173, 1967.PubMedCrossRefGoogle Scholar
  19. 19.
    Collins, M.A.: Tetrahydroisoquinoline alkaloids from condensation of alcohol metabolites with norepinephrine: preparative synthesis and potential analysis in nervous tissue by Gas-Chromatography. In: Alcoholism and the Central Nervous System. Frank A. Seixas and Suzie Eggleston, (eds.), Ann. N.Y. Acad. Sci., 215: 92–97, 1973.Google Scholar
  20. 20.
    Alivisatos, S.G.A., Callaghan, 0.H., Ungar, F., Georgiou, D.C. and Tabakoff, B.: Inhibition of tetrahydroisoquinoline alkaloid formation in brain homogenates by ascorbate (A), cysteine (C) and GSH, and its significance in alcohol addiction. Amer. Chem. Soc. Div. Biol. Chem., Abs., 211: 1971.Google Scholar
  21. 21.
    French, D. and Edsall, J.T.: The reactions of formaldehyde with amino acids and proteins. Adv. Protein Chem., 2: 277–335, 1945.CrossRefGoogle Scholar
  22. 22.
    Sandler, M., Carter, S.B., Hunter, K.R. and Stern, G.M.: Tetrahydroisoquinoline alkaloids: In vivo metabolites of L-Dopa in man. Nature, 241: 439–443, 1973.PubMedCrossRefGoogle Scholar
  23. 23.
    Majchrowicz, E. and Mendelson, J.H.: Blood methanol concentrations during experimentally induced ethanol intoxication in alcoholics. J. Pharmacol. Exp. Ther., 179: 293–300, 1971.PubMedGoogle Scholar
  24. 24.
    Alivisatos, S.G.A. and Ungar, F.: Incorporation of radioactivity from labeled serotonin and tryptamine into acid-insoluble material from subcellular fractions of brain. 1. The nature of the substrate. Biochemistry, 7: 285–292, 1968.PubMedCrossRefGoogle Scholar
  25. 25.
    DeRobertis, E., Alberici, M., Arnaiz, G.R. deLores and Azcurra, J.M.: Isolation of different types of synaptic membranes from the brain cortex. Life Sci, 5: 577–582, 1966.CrossRefGoogle Scholar
  26. 26.
    Ungar, F., Tabakoff, B. and Alivisatos, S.G.A.: Inhibition of binding of aldehydes of biogenic amines in tissue. Biochem. Pharmacol., 22: 1905–1913, 1973.PubMedCrossRefGoogle Scholar
  27. 27.
    Erwin, V.G., Tabakoff, B. and Bronaugh, R.L.: Inhibition of reduced NADP-linked aldehyde reductase from bovine brain by barbiturates. Molec. Pharmacol., 7: 169–176, 1971.Google Scholar
  28. 28.
    Tabakoff, B., Ungar, F. and Alivisatos, S.G.A.: Aldehyde derivatives of indoleamines: Enhancement of their binding onto brain macromolecules by pentobarbital and acetaldehyde. Nature, 238: 126–128, 1973.Google Scholar
  29. 29.
    Tanzer, M.L.: Cross-linking of collagen. Science, 180: 56 1566, 1973.Google Scholar
  30. 30.
    Alivisatos, S.G.A., Ungar, F., Seth, P.K., Levitt, L.P., Geroulis, A.J. and Meyer, T.S.: Receptors: Localization and specificity of binding of serotonin in the central nervous system. Science, 171: 809–812, 1971.PubMedCrossRefGoogle Scholar
  31. 31.
    Symes, A.L. and Sourkes, T.: Pharmacological and biochemical actions of the hemolytic agents acetylphenylhydroxin and phenylhydraxine on MAO in the rat brain. Biochem. Pharmacol., 23: 2045–2056, 1974.PubMedCrossRefGoogle Scholar
  32. 32.
    Victor, M.: Treatment of alcoholic intoxication and the withdrawal syndrome. Psychocoat. Med., 28: 436–450, 1966.Google Scholar
  33. 33.
    Majchrowicz, E.: Ethanol induced accumulation of methanol in alcoholic subjects. Am. Chem. Soc. Div. Biol. Chem., p. 144, Abs., 1973.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Spyridon G. A. Alivisatos
    • 1
  • Ramesh C. Arora
    • 1
  1. 1.Department of Biochemistry, The Chicago Medical SchoolUniversity of Health SciencesChicagoUSA

Personalised recommendations