Interactions of Ethanol with Cyclic AMP

  • Ladislav Volicer
  • Barry I. Gold
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 56)


The introduction of ethanol into a biological system affects its functions in two ways: the first is the effect of ethanol on excitable membranes and the second is the effect of ethanol metabolism on the intermediary metabolism of the system. Both of these primary effects are described in other chapters of this book.


ATPase Activity Purkinje Cell Adenylate Cyclase Ethanol Administration Ethanol Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robison, G.A., Butcher, R.W. and Sutherland, E.W.: Cyclic AMP. Academic Press, New York and London, 1971.Google Scholar
  2. 2.
    Perkins, J.P.: Adenyl cyclase. Adv. Cyclic Nucleot. Res., 3: 1–65, 1973.Google Scholar
  3. 3.
    Gorman, R.E. and Bitensky, M.W.: Selective activation by short chain alcohols of glucagon responsive adenyl cyclase in liver. Endocrinol., 87: 1075–1081, 1970.CrossRefGoogle Scholar
  4. 4.
    Greene, H.L., Herman, R.H. and Kraemer, S.: Stimulation of jejunal adenyl cyclase by ethanol. J. Lab. Clin. Med., 78: 336–342, 1971.PubMedGoogle Scholar
  5. 5.
    Kuriyama, K. and Israel, M.A.: Effect of ethanol administration on cyclic 3’, 5’-adenosine monophosphate metabolism in brain. Biochem. Pharmacol., 22: 2919–2922, 1973.PubMedCrossRefGoogle Scholar
  6. 6.
    Mashiter, K., Mashiter, G.D. and Field, J.B.: Effects of prostaglandin E, ethanol and TSH on the adenylate cyclase activity of beef thyroid plasma membranes and cyclic AMP content of dog thyroid slices. Endocrinology, 94: 370–376, 1974.PubMedCrossRefGoogle Scholar
  7. 7.
    Volicer, L. and Hynie, S.: Effects of catecholamines and angiotensin on cyclic AMP in rat aorta and tail artery. Eur. J. Pharmacol., 15: 214–220, 1971.PubMedCrossRefGoogle Scholar
  8. 8.
    Tague, L.L. and Shanbour, L.L.: Alterations of gastric mucosal cAMP system in presence of ethanol. Tex. Rep. Biol. Med., 31: 103–104, 1973.Google Scholar
  9. 9.
    Satoh, K. and Ryan, K.J.: Adenyl cyclase in the human placenta. Biochim. Biophys. Acta, 244: 618–624, 1971.CrossRefGoogle Scholar
  10. 10.
    Keirns, J.J. Carritt, B., Freeman, J., Eisenstadt, J.M. and Bitensky, M.W.: Adenosine 3’,5’ cyclic monophosphate in Euglena gracilis. Life Sci, 13: 287–302, 1973.PubMedCrossRefGoogle Scholar
  11. 11.
    Kreiner, P.W., Keirns, J.J. and Bitensky, M.W.: A temperature-sensitive change in the energy of activation of hormone-stimulated hepatic adenyl cyclase. Proc. Nat. Acad. Sci. USA, 70: 1785–1789, 1973.PubMedCrossRefGoogle Scholar
  12. 12.
    Krishna, G., Weiss, B. and Brodie, B.B.: A simple, sensitive method for the assay of adenyl cyclase. J. Pharmacol. Exp. Ther., 163: 379–385, 1968.PubMedGoogle Scholar
  13. 13.
    Petrack, B., Ma, D. and Sheppy, F.: Evidence for the formation of apparently new nucleotides by adipocyte ghosts. Fed. Proc.,32: 536, Abs., 1973.Google Scholar
  14. 14.
    Butcher, R.W. and Sutherland, E.W.: Adenosine 3’,5’-phosphate in biological materials. I. Purification and properties of cyclic 3’,5’-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3’,5’-phosphate in human urine. J. BioZ. Chem., 237: 1244–1250, 1962.Google Scholar
  15. 15.
    Thompson, W.J. and Appleman, M.M.: Characterization of cyclic nucleotide phophodiesterases of rat tissues. J. Biol. Chem., 246: 3145–3150, 1971.PubMedGoogle Scholar
  16. 16.
    Cambell, M.T. and Oliver, I.V.: 3’,5’-cyclic nucleotide phosphodiesterases in rat tissues. Eur. J. Biochem., 28: 30–37, 1972.CrossRefGoogle Scholar
  17. 17.
    Appleman, M.M., Thompson, W.J. and Russell, T.R.: Cyclic nucleotide phosphodiesterases. In: Adv. Cyclic Nucleot. Res. 3, P. Greengard and G.A. Robison (eds.) Raven Press, New York, 65–98, 1973.Google Scholar
  18. 18.
    Brooker, G., Thomas, L.J. Jr. and Appleman, M.M.: The assay of adenosine 3’,5’-cyclic monophosphate and guanosine 3’,5’-cyclic monophosphate in biological materials by enzymatic radioisotope displacement. Biochemistry, 7: 4177–4181, 1968.PubMedCrossRefGoogle Scholar
  19. 19.
    Huang, Y.C. and Kemp, R.G.: Properties of a phosphodiesterase with high affinity for adenosine 3’,5’-cyclic phosphate. Biochemistry, 10: 2278–2283, 1971.PubMedCrossRefGoogle Scholar
  20. 20.
    Hitchcock, M.: Adenosine 3’,5’-cyclic monophosphate phosphodiesterase in guinea pig lung–properties and effect of adrenergic drugs. Biochem. Pharmacol., 22: 959–969, 1973.PubMedCrossRefGoogle Scholar
  21. 21.
    Uzunov, P. and Weiss, B.: Separation of multiple molecular forms of cyclic adenosine 3’,5’-monophosphate phosphodiesterase in rat cerebellum by polyacrylamide gel electrophoresis. Biochim. Biophys. Acta, 284: 220–226, 1972.PubMedGoogle Scholar
  22. 22.
    De Robertis, E., Rodriguez, G., Arnaiz, De Lores and Alberici, M.: Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex. J. Biol. Chem., 242: 34873493, 1967.Google Scholar
  23. 23.
    Beavo, J.A., Hardman, J.G. and Sutherland, E.W.: Hydrolysis of cyclic guanosine and adenosine 3’,5’-monophosphates by rat and bovine tissues. J. Biol. Chem., 245: 5649–5655, 1970.PubMedGoogle Scholar
  24. 24.
    Chasin, M., Harris, D.N., Phillips, M.B. and Hess, S.M.: 1-ethyl-4-(isoprophylidenehydrazino)-1H-pyrazolo-(3,4,b)-pyri-dine-5-carboxylic acid, ethyl ester, hydrochloride (S020009)-a potent new inhibitor of cyclic 3’,5’-nucleotide phosphodiesterases. Biochem. Pharmacol., 21: 2443–2450, 1972.PubMedCrossRefGoogle Scholar
  25. 25.
    Cheung, W.Y.: Cyclic 3’,5’-nucleotide phosphodiesterase. Evidence for and properties of a protein activator. J. Biol. Chem., 246: 2859–2869, 1971.PubMedGoogle Scholar
  26. 26.
    Weiss, B.: Selective regulation of the multiple forms of cyclic nucleotide phosphodiesterase by norepinephrine and other agents. In: Frontiers in Catecholamine Research. E. Usdin and S. Snyder (eds.) pp. 327–333, Pergamon Press, Oxford, 1973.Google Scholar
  27. 27.
    Tague, L.L. and Shanbour, L.L.: Effects of ethanol on gastric mucosal adenosine 3’,5’-monophosphate (cAMP). Life Sci., 14: 1065–1073, 1974.PubMedCrossRefGoogle Scholar
  28. 28.
    Mozsik, G.: Some feed-back mechanisms by drugs in the interrelationship between the active transport system and adenyl cyclase system localized in the cell membrane. Europ. J. Pharmacol., 7: 319–327, 1969.CrossRefGoogle Scholar
  29. 29.
    Luly, P., Barnabei, O. and Tria, E.: Hormonal control in vitro of plasma membrane-bound (Na+-K+)-ATPase of rat liver. Biochim. Biophys. Acta, 282: 447–452, 1972.PubMedCrossRefGoogle Scholar
  30. 30.
    Dousa, T.: Adenosine 3’,5’-cyclophosphate and (Na+-K4) activated adenosine triphosphatase. Physiol. Bohemoslov., 19: 113–115, 1970.PubMedGoogle Scholar
  31. 31.
    Lenaz, G., Parenti-Castelli, G., Monsigni, N. and Silvestrini, M.G.: Effect of alcohols on the functional organization of the inner mitochondrial membrane. Bioenergetics, 2: 119127, 1971.Google Scholar
  32. 32.
    Grisham, C.M. and Barnett, R.E.: The effects of long chain alcohols on membrane lipids and the (Na+-K+)-ATPase. Biochim. Biophys. Acta, 311: 417–422, 1973.PubMedCrossRefGoogle Scholar
  33. 33.
    Järnefelt, J.: Lipid requirements of functional membrane structures as indicated by the reversible inactivation of (Na+-K+)-ATPase. Biochim. Biophys. Acta, 266: 91–96, 1972.PubMedCrossRefGoogle Scholar
  34. 34.
    Israel, Y., Kalant, H., Le Blanc, E., Bernstein, J. and Salazar, I.: Changes in cation transport and (Na+-K+)-activated adenosine triphosphatase produced by chronic administration of ethanol. J. Pharmacol. Exp. Ther., 174: 330–336, 1970.PubMedGoogle Scholar
  35. 35.
    Sun, A.Y. and Samorajski, T.: Effects of ethanol on the activity of adenosine triphosphatase and acetylcholinesterase in synaptosomes isolated from guinea-pig brain. J. Neurochem., 17: 1365.. 1372, 1972.Google Scholar
  36. 36.
    Israel, Y. and Salazar, I.: Inhibition of brain microsomal adenosine triphosphatases by general depressants. Arch. Biochem. and Biophys., 122: 310–317, 1967.CrossRefGoogle Scholar
  37. 37.
    Roach, M.K., Khan, M.M., Coffman, R., Pennington, W. and Davis, D.L.: Brain (Ne-e)) activated adenosine triphosphatase activity and neurotransmitter uptake in alcohol-dependent rats. Brain Res, 63: 323–329, 1973.PubMedCrossRefGoogle Scholar
  38. 38.
    Knox, W.H., Perrin, R.G. and Sen, A.K.: Effect of chronic administration of ethanol on (Na+-K+)-activated ATPase activity in six areas of the cat brain. J. Neurochem., 19: 2881–2884, 1972.PubMedCrossRefGoogle Scholar
  39. 39.
    Akera, T., Rech, R.H., Marquis, W.J., Tobin, T. and Brody, T.M.: Lack of relationship between brain (Na+-K+)-activated adenosine triphosphatase and the development of tolerance to ethanol in rats. J. Pharmacol. Exp. Ther., 185: 594–601, 1973.PubMedGoogle Scholar
  40. 40.
    Israel, Y., Carmichael, F.J. and Macdonald, J.A.: Effects of ethanol on norepinephrine uptake and electrically stimulated release in brain tissue. Ann. N.Y. Acad. Sci., 215: 38–48, 1973.PubMedCrossRefGoogle Scholar
  41. 41.
    Goldstein, D.B. and Israel, Y.: Effects of ethanol on mouse brain (Na -K)-activated adenosine triphosphatase. Life Sci. (II), 11: 957–963, 1972.Google Scholar
  42. 42.
    Israel, M.A. and Kuriyama, K.: Effect of in vivo ethanol administration on adenosinetriphosphatase activity of subcellular fraction of mouse brain and liver. Life Sci. (II), 10: 591–599, 1971.CrossRefGoogle Scholar
  43. 43.
    Rawat, A.K., Kuriyama, K. and Mose, J.: Metabolic consequences of ethanol oxidation in brains from mice chronically fed ethanol. J. Neurochem., 20: 23–33, 1973.PubMedCrossRefGoogle Scholar
  44. 44.
    Hyams, D.E. and Isselbacher, K.J.: Prevention of fatty liver by administration of adenosine triphosphate. Nature, 204: 1196–1197, 1964.PubMedCrossRefGoogle Scholar
  45. 45.
    French, S.W.: Effect of acute and chronic ethanol ingestion on rat liver ATP. Proc. Soc. Exp. BioZ. Med., 121: 68 1685, 1966.Google Scholar
  46. 46.
    Oura, E., Räihä, N.C.R. and Suomalainen, H.: Influence of some alcohols and narcotics on the adenosine phosphates in the liver of the mouse. Ann. Biol. Exptl. Med. Fenn., 45: 57–62, 1966.Google Scholar
  47. 47.
    Ammon, H.P.T. and Estler, C.J.: Influence of acute and chronic administration of alcohol on carbohydrate breakdown and energy metabolism in the liver. Nature, 216: 158–159, 1967.PubMedCrossRefGoogle Scholar
  48. 48.
    Walker, J.E.C. and Gordon, E.R.: Biochemical aspects associated with an ethanol-induced fatty liver. Biochem. J., 119: 51 1516, 1970.Google Scholar
  49. 49.
    Marchetti, M., Ottani, V., Zanetti, P. and Puddu, P.: Aspects of lipid metabolism in ethanol-induced fatty liver. J. Nutr., 95: 607–611, 1968.PubMedGoogle Scholar
  50. 50.
    Gordon, E.R. and Lough, J.: Ultrastructural and biochemical aspects during the regression of an ethanol-induced fatty liver. Lab. Invest., 26: 154–162, 1972.PubMedGoogle Scholar
  51. 51.
    Grunnet, N. and Thieden, H.J.D.: The effect of ethanol concentration upon in vivo metabolite levels of rat liver. Life Sci. (II), 11: 983–993, 1972.CrossRefGoogle Scholar
  52. 52.
    Veech, R.L., Guynn, R. and Veloso, D.: The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem. J., 127: 387–397, 1972.PubMedGoogle Scholar
  53. 53.
    Higgins, E.S. and Banks, W.L.: Cognate effects of ethanol, hydrazine and tissue regeneration on hepatic mitochondrial activities. Biochem. Pharmacol., 20: 1513–1524, 1971.CrossRefGoogle Scholar
  54. 54.
    Gajdos, A. and Gajdos-TÖrök, M.: Study of the effect of exogenous glucose on the excess formation of porphyrins and NADH in the liver of rats intoxicated with ethanol. Biochim. Biophys. Acta, 215: 550–553, 1970.PubMedCrossRefGoogle Scholar
  55. 55.
    Griffaton, G., Baron, P. and Lowy, R.: Effets d’une administration aiguë d’ethanol et de fructose sur les teneurs en nucleotides adenyliques du foie de rat. Arch. Int. PhysioZ. Biochim., 79: 75–85, 1971.CrossRefGoogle Scholar
  56. 56.
    Pachinger, 0.M., Tillmanns, H., Mao, J.C., Fauvel, J.M. and Bing, R.J.: The effect of prolonged administration of ethanol on cardiac metabolism and performance in the dog. J. Clin. Invest., 52: 2690–2696, 1973.CrossRefGoogle Scholar
  57. 57.
    Carter, E.A. and Issellbacher, K.J.: Effect of ethanol on intestinal adenosine triphosphate content. Proc. Soc. Exp. Biol. Med., 142: 1171–1173, 1973.PubMedGoogle Scholar
  58. 58.
    Tague, L.L. and Shanbour, L.L.: Effects of ethanol on possible transport mechanisms of the gastric mucosa. Gastroenterology, 66: 787, Abs., 1974.Google Scholar
  59. 59.
    Pliska, V., Glattfelder, A. and Birnbaumer, L.: Regulation of cAMP action on the cellular level: a compartment model. Experientia, 28: 750, 1972.Google Scholar
  60. 60.
    Tague, L.L. and Shanbour, L.: Effects of ethanol on Mg++ and Mg++, HCO3-stimulated ATPase, ATP and cyclic 3’,5’-adenosine monophosphate in canine gastric mucosa. J. Pharmaeol. Exp. Ther.,(In Press).Google Scholar
  61. 61.
    Solomon, N., Solomon, T.E., Jacobson, E.D. and Shanbour, L.L.: Direct effects of alcohol on in vivo and in vitro exocrine pancreatic secretion and metabolism. Am. J. Dig. Dis., 19: 253–260, 1974.PubMedCrossRefGoogle Scholar
  62. 62.
    Sherr, H., Herman, R.H., Stifel, F.B. and Hagler, L.: Personal Communication.Google Scholar
  63. 63.
    Volicer, L.: Effect of ethanol on adenosine 3’,5’-monophosphate in rat tissues in vivo. Pharmacologist, 13: 218, 1971.Google Scholar
  64. 64.
    Stifel, F.B., Greene, H.L., Lufkin, E.G. and Herman, R.H.: Acute effects of oral and intravenous ethanol on rat hepatic enzyme activities. Fed. Proc., 33: 709, 1974.Google Scholar
  65. 65.
    Volicer, L. and Gold, B.I.: Effect of ethanol on cyclic AMP levels in the rat brain. Life Sci., 13: 269–280, 1973.PubMedCrossRefGoogle Scholar
  66. 66.
    Sattin, A.: Increase in the content of adenosine 3’,5’-monophosphate in mouse forebrain during seizures and prevention of the increase by methylxanthines. J. Neurochem., 18: 1087–1096, 1971.PubMedCrossRefGoogle Scholar
  67. 67.
    Paul, M.J., Pauk, G.L. and Ditzion, B.R.: The effect of centrally acting drugs on the concentration of brain adenosine 3’,5’-monophosphate. Pharmacology, 3: 148–154, 1970.CrossRefGoogle Scholar
  68. 68.
    Israel, M.A., Kimura, H. and Kuriyama, K.: Changes in activity and hormonal sensitivity of brain adenyl cyclase following chronic ethanol administration. Experientia, 28: 1322 1323, 1972.Google Scholar
  69. 69.
    Katz, L. and Tenenhouse, A.: The relation of adenyl cyclase to the activity of other ATP utilizing enzymes and phosphodiesterase in preparations of rat brain; mechanism of stimulation of cyclic AMP accumulation by NaF. Br. J. Pharmaeol., 48: 505–515, 1973.Google Scholar
  70. 70.
    French, G.W. and Palmer, D.S.: Adrenergic supersensitivity during ethanol withdrawal in the rat. Res. Commun. Chem. PathoZ. Pharmacol., 6: 651–662, 1973.Google Scholar
  71. 71.
    Palmer, D.S., French, G.W. and Narad, M.E.: Increase in cAMP response to norepinephrine, histamine and serotonin by brain slices in ethanol dependent rats. Fed. Proc., 33: 710, 1974.Google Scholar
  72. 72.
    French, G.W., Palmer, D.S. and Narad, M.: Increase in cyclic AMP response to norepinephrine by liver mitochondria in ethanol-dependent rats. Am. J. PathoZ., 74: 67a, 1974.Google Scholar
  73. 73.
    Majchrowicz, E.: Effects of ethanol on liver metabolism. Adv. Exp. Med. Biol., 35: 79–104, 1973.Google Scholar
  74. 74.
    Mallow, G. and Bloch, J.L.: Role of hypophysis and adrenals in fatty infiltration of liver resulting from acute ethanol intoxication. Am. J. PhysioZ., 184: 29–34, 1956.Google Scholar
  75. 75.
    Maickel, R.P. and Brodie, B.B.: Interaction of drugs with the pituitary-adrenocortical system in the production of the fatty liver. Ann. N.Y. Acad. Sci., 104: 1059–1064, 1963.Google Scholar
  76. 76.
    Brodie, B.B. and Maickel, R.P.: Role of the sympathetic nervous system in drug-induced fatty liver. Ann. N.Y. Acad. Sci., 104: 1049–1058, 1963.Google Scholar
  77. 77.
    Claycomb, W.C. and Kilsheimer, G.S.: Effect of glucagon, adenosine-3’,5’-monophosphate and theophylline on free fatty acid release by rat liver slices and on tissue levels of coenzyme A esters. Endocrinology, 84: 1179, 1969.PubMedCrossRefGoogle Scholar
  78. 78.
    Schapiro, R.H., Drummey, G.D., Yoshitaka, S. and Isselbacher, K.J.: Studies on the pathogenesis of the ethanol-induced fatty liver. II. Effect of ethanol on palmitate-1-C14 metabolism by the isolated perfused rat liver. J. Clin. Invest., 43: 1338–1347, 1964.PubMedCrossRefGoogle Scholar
  79. 79.
    Heimberg, M., Weinstein, I. and Kohant, M.: The effects of glucagon, dibutyryl cyclic adenosine 3’,5’-monophosphate and concentration of free fatty acid on hepatic lipid metabolism. J. Biol. Chem., 244: 5131–5139, 1969.PubMedGoogle Scholar
  80. 80.
    Erwin, V.G., Anderson, A.D. and Eide, G.J.: Enhancement of fatty acid oxidation and medium-chain fatty acyl coenzyme A synthetase by adenine nucleotides in rat heart homogenates. J. Pharm. Sci., 60: 77–80, 1971.PubMedCrossRefGoogle Scholar
  81. 81.
    Poggi, M. and DiLuzio, N.R.: The role of liver and adipose tissue in the pathogenesis of the ethanol-induced fatty liver. J. Lipid Res., 5: 437–441, 1964.PubMedGoogle Scholar
  82. 82.
    Reboucas, G. and Isselbacher, K.J.: Studies on the pathogenesis of the ethanol-induced fatty liver: I. Synthesis and oxidation of fatty acids by the liver. J. Clin. Invest., 40: 1355–1362, 1961.PubMedCrossRefGoogle Scholar
  83. 83.
    Fex, G. and Olivecrona, T.: Role of uptake and oxidation of plasma free fatty acids by the liver in the development of the ethanol-induced fatty liver. Acta Physiol. Scand., 75: 78–81, 1969.PubMedCrossRefGoogle Scholar
  84. 84.
    Kakiuchi, S. and Rall, T.W.: The influence of chemical agents on the accumulation of adenosine 3’,5’-phosphate in slices of rabbit cerebellum. Mol. Pharmacol., 4: 367–378, 1968.PubMedGoogle Scholar
  85. 85.
    Kebabian, J.W., Petzold, G.L. and Greengard, P.: Dopamine-sensitive asenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc. Nat. Acad. Sci. USA., 69: 2145–2149, 1972.PubMedCrossRefGoogle Scholar
  86. 86.
    Chou, W.S., Ho, A.K.G. and Lo, H.H.: Effect of acute and chronic morphine and norepinephrine on brain adenyl cyclase activity. Proc. West. Pharmacol. Soc., 14: 42–46, 1971.Google Scholar
  87. 87.
    Burkard, W.P.: Catecholamine induced increase of cyclic adenosine 3’,5’-monophosphate in rat brain in vivo. J. Neurochem., 19: 2615–2619, 1972.CrossRefGoogle Scholar
  88. 88.
    Bloom, F.W., Hoffer, B.J., Battenberg, E.R., Siggins, G.R., Steiner, A.L., Parker, C.W. and Wedner, H.J.: Adenosine 3’,5’-monophosphate is localized in cerebellar neurons: Immunofluorescence evidence. Science, 177: 436–438, 1972.PubMedCrossRefGoogle Scholar
  89. 89.
    Ungerstedt, U.: Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand., (Suppl.) 367, 1971.Google Scholar
  90. 90.
    Bloom, F.E., Hoffer, B.J. and Siggins, G.R.: Norepinephrine mediated cerebellar synapses: A model system for neuropsychopharmacology. BioZ. Psychiatry, 4: 157–177, 1972.Google Scholar
  91. 91.
    Siggins, G.R., Oliver, A.P., Hoffer, B.J. and Bloom, F.E.: Cyclic adenosine monophosphate and norepinephrine: Effects on transmembrane properties of cerebellar Purkinje cells. Science, 171: 192–194, 1971.PubMedCrossRefGoogle Scholar
  92. 92.
    Godfraind, J.M. and Pumain, R.: Cyclic adenosine monophosphate and norepinephrine: Effect on Purkinje cells in rat cerebellar cortex. Science, 174: 1257–1258, 1971.PubMedCrossRefGoogle Scholar
  93. 93.
    Lake, N. and Jordan, L.M.: Failure to confirm cyclic AMP as second messenger for norepinephrine in rat cerebellum. Science, 183: 663–664, 1974.PubMedCrossRefGoogle Scholar
  94. 94.
    Greengard, P., McAfee, D.A. and Kebabian, J.W.: On the mecha-nism of action of cyclic AMP and its role in synaptic transmission. Adv. Cyclic Nucleot. Res., 1: 337–355, 1972.Google Scholar
  95. 95.
    McAfee, D.A. and Greengard, P.: Adenosine 3’,5’-monophosphate: Electrophysiological evidence for a role in synaptic transmission. Science, 178: 310–312, 1972.PubMedCrossRefGoogle Scholar
  96. 96.
    DiPerri, R., Dravid, A., Schweigerdt, A. and Himwich, H.E.: Effects of alcohol on evoked potentials of various parts of the central nervous system of cat. Quart. J. Stud. Ale., 29: 20–37, 1968.Google Scholar
  97. 97.
    Allsop, J. and Turner, B.: Cerebellar degeneration associated with chronic alcoholism. J. Neurol. Sci., 3: 238–258, 1966.PubMedCrossRefGoogle Scholar
  98. 98.
    Eidelberg, E., Bond, M.L. and Kelter, A.: Effects of alcohol on cerebellar and vestibular neurones. Arch. Int. Pharmacodyn. Ther., 192: 213–219, 1971.PubMedGoogle Scholar
  99. 99.
    Blum, K.: Effects of catecholamine synthesis inhibition on ethanol narcosis in mice. Curr. Ther. Res., 14: 324–329, 1972.PubMedGoogle Scholar
  100. 100.
    Smith, A.A., Hayashida, K. and Kim, Y.: Inhibition by propranolol of ethanol-induced narcosis. J. Pharm. Pharmacol., 22: 644–645, 1970.PubMedCrossRefGoogle Scholar
  101. 101.
    Hayashida, K. and Smith, A.A.: Reversal by sotalol of the respiratory depression induced in mice by ethanol. J. Pharm. Pharmacol., 23: 718–719, 1971.PubMedCrossRefGoogle Scholar
  102. 102.
    Allen, L.E., Ferguson, H.C. and McKinney, G.R.: A survey of selected drugs on behavior performance in ethanol-treated rats. Eur. J. Pharmacol., 15: 371–374, 1971.PubMedCrossRefGoogle Scholar
  103. 103.
    Hungen, K.V. and Roberts, S.: Adenylate cyclase receptors for adrenergic transmitters in rat cerebral cortex. Eur. J. Biochem., 36: 391–401, 1973.CrossRefGoogle Scholar
  104. 104.
    Stone, C.A. and Porter, C.C.: Biochemistry and pharmacology of methyldopa and some related structures. Adv. Drug. Res., 4: 71–93, 1967.PubMedGoogle Scholar
  105. 105.
    Goldman, V., Comerford, B., Hughes, D. and Nyberg, G.: Effect of 13-adrenergic blockade and alcohol on simulated car driving. Nature, 224: 1175–1178, 1969.PubMedCrossRefGoogle Scholar
  106. 106.
    Mendelson, J.H., Rossi, A.M., Bernstein, J.G. and Kuehnle, J.: Effects of propranolol on behavior of alcohol addicts following acute ethanol intake. (submitted for publication).Google Scholar
  107. 107.
    Noble, E.P., Parker, E., Alkana, R., Cohen, H. and Birch, H.: Propranolol-ethanol interaction in man. Fed. Proc., 32: 724, Abs., 1973.Google Scholar
  108. 108.
    Cohn, M.L., Kraynack, B., Cohn, M. and Scattaregia, F.: Interaction of cyclic AMP with neuropharmacologic depressant agents. Fed. Proc., 32: 680, Abs., 1973.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Ladislav Volicer
    • 1
  • Barry I. Gold
    • 1
  1. 1.Department of PharmacologyBoston University School of MedicineUSA

Personalised recommendations