Growth Characteristics of Calcite Crystals in Aqueous Solutions of Carbonic Acid

  • N. Yu. Ikornikova
Part of the Studies in Soviet Science book series (STSS)


Natural crystals of Iceland spar are formed in both chloride and carbonate hydrothermal solutions. In this communication we shall present the results of some experiments on the growth of calcite crystals in aqueous solutions of carbonic acid. In relation to the composition of the virtual components* these solutions are analogous to natural carbonate thermal springs.


Temperature Coefficient Carbonic Acid Calcite Crystal Henry Constant Impurity Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. Wiebe and J. Gaddy, J. Amer. Chem. Soc., 61: 315 (1939).CrossRefGoogle Scholar
  2. 2.
    R. Weibe and J. Gaddy, J. Amer. Chem. Soc., 63: 475 (1941).CrossRefGoogle Scholar
  3. 3.
    S. D. Malinin, in: Geochemical Investigations at High Temperatures and Pres-sures [in Russian], Izd. Nauka (1965), p. 48.Google Scholar
  4. 4.
    N. I. Khitarov and S. D. Malinin, Geokhimiya, No. 3, p. 18 (1956).Google Scholar
  5. 5.
    S. D. Malinin, Geokhimiya, No. 3, p. 292 (1959).Google Scholar
  6. 6.
    S. Takenouchi and G. C. Kennedy, Amer. J. Sci., 262: 1055 (1964).CrossRefGoogle Scholar
  7. 7.
    K. Todheide and E. U. Frank, Z. Phys. Chem., 37: 387 (1963).CrossRefGoogle Scholar
  8. 8.
    A. I. Ellis and R. Golding, Amer. J. Sci., 261: 47 (1963).CrossRefGoogle Scholar
  9. 9.
    M. Moore and J. Buchanan, J. Sci. Iowa State College, 4: 431 (1930).Google Scholar
  10. 10.
    P. Wyllie and O. Tuttle, in: Questions of Theoretical and Experimental Topography [Russian translation], IL, (1963), p. 66.Google Scholar
  11. 11.
    P. J. Wyllie and E. F. Raynor, Amer. Mineral., 50: 2077 (1965).Google Scholar
  12. 12.
    G. Grezes and M. Basset, Compt. Rend., 254:263 (1962); 260:869 (1965); 262: 1217 (1966).Google Scholar
  13. 13.
    J. Miller, Amer. J. Sci., 250: 161 (1952).CrossRefGoogle Scholar
  14. 14.
    A. I. Ellis, Amer. J. Sci., 257: 354 (1959).CrossRefGoogle Scholar
  15. 15.
    A. I. Ellis, Amer. J. Sci., 261: 259 (1963).CrossRefGoogle Scholar
  16. 16.
    E. K. Seignit, H. D. Holland, and C. J. Biscardy, Geochim. Cosmochim. Acta, 26: 1301 (1962).ADSCrossRefGoogle Scholar
  17. 17.
    W. E. Sharp and G. C. Kennedy, J. Geol., 73: 40 (1965).Google Scholar
  18. 18.
    N. V. Belov, Structure of Ionic Crystals and Metallic Phases [in Russian], Izd. AN SSSR (1947).Google Scholar
  19. 19.
    H. Strunz, Mineralogical Tables [Russian translation], GNTI Lit. po Gornomu Delo, Moscow (1962), p. 43.Google Scholar
  20. 20.
    D. N. Grigor’ev, Ontogeny of Minerals [in Russian], Izd. L’vov. Univ. (1961), p. 203.Google Scholar
  21. 21.
    I. I. Shafranovskii, Crystals of Minerals, Curved-Faced Skeletal and Granular Shapes [in Russian], GNTI Lit. po Geol. i Okhrane Nedr., Moscow (1961), pp. 191, 193.Google Scholar
  22. 22.
    S. P. F. Humphrey-Owen, Proc. Roy. Soc., 197: 218 (1949).ADSCrossRefGoogle Scholar
  23. 23.
    N. Yu. Ikornikova, in: Hydrothermal Synthesis of Crystals [in Russian], Izd. Nauka (1968), p. 114.Google Scholar

Copyright information

© Consultants Bureau, New York 1973

Authors and Affiliations

  • N. Yu. Ikornikova

There are no affiliations available

Personalised recommendations