Advertisement

Laser-Oriented Search of the Optimum Light for Phototherapy

  • G. P. Donzelli
  • M. G. Migliorini
  • R. Pratesi
  • G. Sbrana
  • C. Vecchi

Abstract

The availability of coherent optical sources (lasers) has permitted a rapid development of photosurgical and photocoagulative techniques during the last decadel. Photomedicine2 appeared another very interesting field for laser applications in view of the potential progresses in the already existing phototherapeutical procedures, and for the importance of laser techniques in the photobiological field3. The laser photochemotherapy of tumors4 represents a noticeable example of this prevision.

Keywords

Human Serum Albumin Light Emit Diode Fluorescent Lamp Laser Irradiance Neonatal Jaundice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.Hillenkamp, R.Pratesi and C.A.Sacchi, eds., “Lasers in Biology and Medicine”, Plenum Press Ltd., New York (1980).Google Scholar
  2. 2.
    J.D.Regan and J.A.Parrish, eds., “The Science of Photomedicine”, Plenum Press Ltd., New York (1982).Google Scholar
  3. 3.
    R.Pratesi and C.A.Sacchi, eds., “Lasers in Photomedicine and Photobiology”, Springer, Heidelberg (1980).Google Scholar
  4. 4.
    R.Cubeddu and A.Andreoni, eds., “Porphyrins in Tumor Photo-therapy”, Plenum Press Ltd., New York in press.Google Scholar
  5. 5.
    J.F.Ennever and W.T.Speck, Mechanism of Action of Phototherapy: New Aspects, This volume, pp.Google Scholar
  6. 6.
    R.Parshad, R.Gantt, K.K.Sanford, G.M.Jones,and R.F. Camalier, Light-Induced Chromatid Damage in Duman Skin Fibroblasts in Culture. Int.J.Cancer 28: 335 (1982).Google Scholar
  7. 7.
    G.Sbrana, M.G.Migliorini, C.Vecchi, and G.P.Donzelli, Laser Photolysis of Bilirubin, Pediat.Res. 15: 1517 (1981).Google Scholar
  8. 8.
    C.Vecchi, G.P.Donzelli, M.G.Migliorini, G.Sbrana, and R.Pratesi, Green Light in Phototherapy of Hyperbilirubinemia, Proc. 3rd Natl.Congr.on Quantum Electronics, Como 27–29 May 1982, pp. 310–314.Google Scholar
  9. 9.
    G.R.Gutcher, W.M.Yen, and G.B.Odell, The “in vitro” and “in vivo” Photoreactivity of Bilirubin: I. Laser-Defined Wave-Length Dependence, Pediat.Res 17: 120 (1983).Google Scholar
  10. 10.
    C.Vecchi, and G.P.Donzelli, Superiority of Green Light in the Management of Neonatal Jaundice, 8th European Congress on “Perinatal Medicine”, Brussels, September 7–10, 1982.Google Scholar
  11. 11.
    C.Vecchi, G.P.Donzelli, M.G.Migliorini, G.Sbrana, and R.Pratesi, New Light in Phototherapy, The Lancet August 14, 390 (1982).Google Scholar
  12. 12.
    C.Vecchi, G.P.Donzelli, M.G.Migliorini and G.Sbrana, Green Light in Phototherapy, Pediat.Res 17: 461 (1983).Google Scholar
  13. 13.
    W.T.Ham Jr., H.A.Mueller, and D.A.Sliney, Retinal Sensitivity to Damage from Short Wavelength Light, Nature 260: 153 (1976)Google Scholar
  14. 14.
    T.R.C.Sisson, and T.P.Vogl, Phototherapy of Hyperbilirubinemia, in: “The Science of Photomedicine”, J.D.Regan and J.A.Parrish, eds., Plenum Press, New York (1982).Google Scholar
  15. 15.
    D.A.Lightner, T.A.Wooldridge, S.L.Rodgers, and R.D.Norris, Action Spectra for Bilirubin Photodisappearence, Experientia 36: 380 (1980).Google Scholar
  16. 16.
    J.F.Ennever, J.F.Mc Donagh, and W.T.Speck, Phototherapy of Neonatal Jaundice: Optimal Wavelengths of Light, J.Pediat in press.Google Scholar
  17. 17.
    S.Wan, R.R.Anderson, and J.A.Parrish, Analytical Modeling for the Optical Properties of the Skin with “in vitro” and “in vivo ” Applications, Photochem.Photobiol 34: 493 (1981).Google Scholar
  18. 18.
    R.R.Anderson, and J.A.Parrish, The Optics of Human Skin, J.Invest.Dermatol 77: 13 (1981).CrossRefGoogle Scholar
  19. 19.
    R.Pratesi, L.Ronchi, G.Cecchi, M.G.Migliorini, G.Sbrana, G.P. Donzelli, and C.Vecchi, Skin Optics and Phototherapy of Jaundice, Submitted for publication.Google Scholar
  20. 20.
    R.Pratesi and M.Scalvini, A Solid-State Lamp (LED) Approach to Phototherapy, Biol.Med.Environ. 11: 467 (1983).Google Scholar
  21. 21.
    G.Jori, R.Pratesi, and M.Scalvini, A Multi-LED Source for Photoradiation Therapy, in: “Porphyrins in Tumors Phototherapy”, R.Cubeddu, A.Andreoni, eds., Plenum Press, in press.Google Scholar
  22. 22.
    R.Pratesi, G.Agati, F.Fusi, M.G.Migliorini, G.Sbrana, G.P.Donzelli, and C.Vecchi, Laser Investigation of Bilirubin * Photobilirubin Photoconversion, Submitted for publication.Google Scholar
  23. 23.
    D.A.Lightner, T.A.Wooldridge, and A.F.Mc Donagh, Photobilirubin: an Early Bilirubin Photoproduct Detected by Absorbance Difference Spectroscopy, Proc.Natl.Acad.Sci.(USA) 76: 29 (1979).Google Scholar
  24. 24.
    S.Yasunaga, and E.H.Kean, The effect of Plexiglas Incubators on Phototherapy, J.Pediat. 81: 89 (1972).Google Scholar
  25. 25.
    R.Parshad, K.K.Sanford, W.G.Taylor, R.E.Tarone, G.N.Jones, and A.E.Baek, Effect of the intensity and Wavelength of Fluorescent Light on Chromosome Damage in Cultured Mouse Cells, Photochem.Photobiol., 29: 971 (1979).CrossRefGoogle Scholar
  26. 26.
    S.Järig, D.Järig, and P.Meisel, Metal Halid Vapor Lamps in New Trends in Phototherapy, This volume, pp.Google Scholar
  27. 27.
    T.Ormond, Fiber-Optic Components, EDN 28: 112 (1983).Google Scholar
  28. 28.
    M.E.Mahric, M.Epstein, and R.V.Lobraico, A Proposal for LightEmitting-Diode Array for Photoradiation Therapy, to be published.Google Scholar
  29. 29.
    D.R.Scifres, R.D.Burnham, C.Lindstrom, W.Streifer, and L.T.Paoli, High-Power Diode Lasers, Paper TUC5, presented at the CLEO, May 17–20, Baltimore, USA (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • G. P. Donzelli
    • 1
  • M. G. Migliorini
    • 2
  • R. Pratesi
    • 4
  • G. Sbrana
    • 3
  • C. Vecchi
    • 1
  1. 1.Istituto di PediatriaUniversità di FirenzeItaly
  2. 2.Istituto di Chimica-FisicaUniversità di FirenzeItaly
  3. 3.Centro di Studio dei Composti Eterociclici del CNRFirenzeItaly
  4. 4.Istituto di Elettronica Quantistica del CNRFirenzeItaly

Personalised recommendations