Photophysical Properties of Bile Pigments

  • E. J. Land
  • R. W. Sloper
  • T. G. Truscott


Phototherapy has been successfully used for a number of years for the treatment of neonatal hyperbilirubinemia. Although the major mechanism is now known to involve photoisomerisation1,2,3,4,5, other photoprocesses involving bilirubin (BR) may still have biological relevance. Thus an understanding of the photophysics of BR is important for assessing any other possible processes related to phototherapy.


Human Serum Albumin PHOTOPHYSICAL Property Primary Binding Site Flash Photolysis Pulse Radiolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.A. Lightner, T.A. Woolbridge, and A.F. McDonagh, “Configurational Isomerisation of Bilirubin and the Mechanism of Jaundice Phototherapy”, Biochem. Biophys. Res. Commun., 86: 235 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    D.A. Lightner, T.A. Woolbridge, and A.F. McDonagh, “Photobilirubin: An Early Bilirubin Photoproduct Detected by Absorbance Difference Spectroscopy”, Proc. Natl. Acad. Sci. U.S.A., 76: 29 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    A.F. McDonagh, D.A. Lightner, and T.A. Woolbridge, “Geometric Isomerization of Bilirubin - IX a and its Dimethyl Ester, J. Chem. Soc.,Chem. Commun., 110, (1979).Google Scholar
  4. 4.
    S. Onishi, S. Itoh, N. Kawade, K. Isobe, and S. Sugiyana, “The Separation of Configurational Isomers of Bilirubin by High Pressure Liquid Chromatography and the Mechanism of Jaundice Phototherapy”, Biochem. Biophys. Res. Commun., 90: 890, (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    M.S. Stoll, E.A. Zenone, D. Ostrow, and J.E. Zavembo, “Preparation and Properties of Bilirubin Photoisomers”, Biochem. J., 183: 139, (1979).PubMedGoogle Scholar
  6. 6.
    R.W. Sloper and T.G. Truscott, “Excited States of Bilirubin”, Photochem. Photobiol., 31: 445 (1980).CrossRefGoogle Scholar
  7. 7.
    E.J. Land, R.W. Sloper, and T.G. Truscott, “The Radical Ions and Photoionization of Bile Pigments”, Radiation Res., - in press.Google Scholar
  8. 8.
    R.W. Sloper and T.G. Truscott, “The Quantum Yield of Bilirubin Photoisomerisation”, Photochem. Photobiol., 35: 743, (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    A.A. Lamola, J. Flores, J. Eisinger, and F.H. Doheiden, “Photoisomerization of Bilirubin Bound to Human Serum Albumin”, Ann. Meeting Am. Soc. Photobiol., 17–21 Feb., Abstr. TAM D1, p. 88, (1980).Google Scholar
  10. 10.
    I.B.C. Matheson, N.U. Curry and J. Lee, “The Photochemical Quantum Yield for the Self-sensitized Photo-oxidation of Bilirubin. Evidence for Oxygen-induced Intersystem Crossing at High Oxygen Concentrations”, Photochem. Photobiol., 31: 115, (1980).CrossRefGoogle Scholar
  11. 11.
    A.F. McDonagh, “Role of Singlet Oxygen in Bilirubin Photooxidation”, Biochem. Biophys. Res. Commun., 44: 1306, (1971).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Bonnett, and J.C.M. Stewart, “Singlet Oxygen in the Photooxidation of Bilirubin in Hydroxylic Solvents”, Biochem. J., 130: 895, (1972).PubMedGoogle Scholar
  13. 13.
    D.A. Lightner and A. Cu, “Wavelength Dependence of Bilirubin Photoreactivity”, Life Sci., 20: 723, (1977).CrossRefGoogle Scholar
  14. 14.
    W.A. Prutz, and E.J. Land, “Charge Transfer in Peptides. Pulse Radiolysis of One Electron Reactions in Dipeptides of Tryptophan and Tyrosine”, Int. J. Radiat. Biol., 36: 513, (1979).CrossRefGoogle Scholar
  15. 15.
    W.A. Prutz, J. Butler, E.J. Land, and A.J. Swallow, “Direct Demonstration of Electron Transfer Between Tryptophan and Tyrosine in Proteins”, Biochem.Biophys. Res. Commun., 96: 408, (1980).Google Scholar
  16. 16.
    W.A. Prutz, E.J. Land, and R.W. Sloper, “Change Transfer in Peptides”, J. Chem. Soc., Faraday 1, 77: 281, (1981).Google Scholar
  17. 17.
    R.W. Sloper and E.J. Land, “Photoinitiation of One Electron Reactions in Dipeptides and Proteins Containing Tryptophan and Tyrosine”, Photochem. Photobiol., 32: 687, (1980).CrossRefGoogle Scholar
  18. 18.
    C. Jacobsen, “Lysine Residue 240 of Human Serum Albumin is Involved in High Affinity Binding of Bilirubin”, Biochem. J., 171: 453, (1972).Google Scholar
  19. 19.
    C. Jacobsen and J. Jacobsen, “Dansylation of Human Serum Albumin in the Study of the Primary Binding Sites of Bilirubin and L-tryptophan”, Biochem. J., 181: 251, (1979).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • E. J. Land
    • 1
  • R. W. Sloper
    • 2
  • T. G. Truscott
    • 2
  1. 1.Paterson LaboratoriesThe Christie Hospital and Holt Radium InstituteManchesterUK
  2. 2.Dept. of ChemistryPaisley CollegePaisleyUK

Personalised recommendations