Advertisement

Solution Conformations, Photophysics, and Photochemistry of Bilirubin and Biliverdin Dimethyl Esters

  • Kurt Schaffner

Abstract

This review will focus on the results of the investigations into the solution conformation, the photophysics and photochemistry of BRE, BVE, and related linear open-chain tetrapyrroles,* which have been carried out in Mülheim under the competent direction of Professor Silvia E. Braslavsky and Dr. Alfred R. Holzwarth (cf. ref 1 for a more extensive review of this and the literature work). The linear pigments are extended chromophores of unusual conformational flexibility in both the electronic ground and excited states. In principal, various configurational, conformational and tautomeric forms are possible, and interconversions of these forms can include E-Z photoisomerizations of the C=C bonds and rotations around the C-C bonds of the bridges, as well as intra- and intermolecular proton transfer processes. Some of these processes will link species which are almost isoenergetic and have overlapping spectra. These species often possess significantly different excited state properties, with thermally reversible photochemical changes. Direct experimental detection is thus often difficult, and reversible photochemical processes may appear as “energy wasting” channels difficult to distinguish from direct radiationless deactivation of the excited state to the ground state.

Keywords

Human Serum Albumin Singlet Excited State Dimethyl Ester Neonatal Jaundice Ethyl Lactate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

D(UV)/D(Vis)

ratio of dipole strengths of absorption and fluorescence excitation bands

OAS

opto-acoustic spectroscopy

CD

circular dichroism

PP

picosecond pump-probe

RT

room temperature

SPT

single-photon timing

MTHF

2-methyltetrahydrofuran; see also formula captions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.E. Braslavsky, A. R. Holzwarth, and K. Schaffner, Solution Conformations, Photophysics, and Photochemistry of Bile Pigments. Bilirubin and Biliverdin Dimethyl Esters and Related Linear Tetrapyrroles, Angew. Chem. Int. Ed. 21:in press (1983).Google Scholar
  2. 2.
    A.R. Holzwarth, E. Langer, H. Lehner, and K. Schaffner, Absorption, Luminescence, Solvent-induced Circular Dichroism and NMR study of Bilirubin Dimethyl Ester: Observation of Different Forms in Solution, Photochem. Photobiol. 32: 17 (1980).CrossRefGoogle Scholar
  3. 3.
    W. Kufer, H. Scheer, and A. R. Holzwarth, Isophorcarubin - A Conformationally restricted and Highly Fluorescent Bilirubin, Isr. J. Chem. 23:in press(1983).Google Scholar
  4. 4.
    R. Bonnett, J. E. Davies, M. B. Hursthouse, and G. M.Sheldrick, The Structure of Bilirubin, Proc. R.Chem. Soc. B 202: 249 (1978).Google Scholar
  5. 5.
    A. R. Holzwarth, H. Lehner, S. E. Braslavsky, and K.Schaffner, The Fluorescence of Biliverdin Dimethyl Ester, Liebigs Ann. Chem. 2002 (1978).Google Scholar
  6. 6.
    H. Falk and F. Neufingerl, Zur anaeroben Photochemie von Gallenpigmenten: Die Lumineszenz von Gallenpigment-Partialstruktursystemen und integralen Farbstoffen, Monatsh. Chem. 110:987 (1979).Google Scholar
  7. 7.
    A. R. Holzwarth, S. E. Braslavsky, S. Culshaw, and K. Schaffner, The Blue Anomalous Emission of Large and Small Phytochrome, Photochem. Photobiol. 36: 581 (1982).Google Scholar
  8. 8.
    A. A. Lamola and J. Flores, Effect of Buffer Viscosity on the Fluorescence of Bilirubin Bound to Human Serum Albumin, J. Am. Chem. Soc. 104:2530 (1982).Google Scholar
  9. 9.
    A. A. Lamola, J. Flores, and F. H. Doleiden, Quantum Yield and Equilibrium Position of the Configurational Photoisomerization of Bilirubin Bound to Human Serum Albumin, Photochem. Photobiol. 35:649 (1982).Google Scholar
  10. 10.
    A. F. McDonagh, L. A. Palma, F. R. Trull, and D. A. Lightner, Phototherapy for Neonatal Jaundice. Configurational Isomers of Bilirubin, J. Am. Chem. Soc. 104:6865 (1982).Google Scholar
  11. 11.
    A. F. McDonagh, L. A. Palma, and D. A. Lightner, Photo-therapy of Neonatal Jaundice. Stereospecific and Regioselective Photoisomerization of Bilirubin Bound to Human Serum Albumin and NMR Characterization of Intramolecularly Cyclized Photoproducts, J. Am. Chem. Soc. 104:6867 (1982).Google Scholar
  12. 12.
    H. Falk, N. Müller, M. Ratzenhofer, and K. Winsauer, The Structure of “Photobilirubin”, Monatsh. Chem. 113:1421 (1982).Google Scholar
  13. 13.
    A. R. Holzwarth and K. Schaffner, Wavelength Dependence of Quantum Yields and Product Distribution in the Anaerobic Photochemistry of Bilirubin Dimethyl Ester, Photochem. Photobiol. 33:635 (1981).Google Scholar
  14. 14.
    A. F. McDonagh, D. A. Lightner, and T. A. Wooldridge, Geometric Isomerisation of Bilirubin-IX and its Dimethyl Ester, J. Chem. Soc., Chem. Commun. 110 (1979).Google Scholar
  15. 15.
    G. Favini, D. Pitea, and P. Manitto, Intramolecular Energy Map for 3,3’-Dimethylpyrrol-2-y1 Methane, Nouv. J. Chim. 3:299 (1979).Google Scholar
  16. 16.
    B. I. Greene, A. A. Lamola, and C. V. Shank, Picosecond Primary Photoprocesses of Bilirubin Bound to Human Serum Albumin, Proc. Natl. Acad. Sci. USA 78:2008 (1981).Google Scholar
  17. 17.
    H. Lehner, S. E. Braslavsky, and K. Schaffner, Isolation, Characterization and Solution Conformation of Biliverdin Dimethyl Ester and its XIII Isomer, Liebigs Ann. Chem. 1990 (1978).Google Scholar
  18. 18.
    H. Lehner, S. E. Braslavsky, and K. Schaffner, Enantiomerism and Diastereoisomerism of Bishelical Bilatriene Dimers in the Crystal Lattice, Angew. Chem., Int. Ed. 17:948 (1978).Google Scholar
  19. 19.
    H. Lehner, W. Riemer, and K. Schaffner, The Interconversion Barrier of the Bilatriene Helix, Liebigs Ann. Chem. 1798 (1979).Google Scholar
  20. 20.
    S. E. Braslavsky, A. R. Holzwarth, E. Langer, H. Lehner, J. I. Matthews, and K. Schaffner, Conformational Heterogeneity and Photochemical Changes of Biliverdin Dimethyl Ester in Solution, Isr. J. Chem. 20:196 (1980).Google Scholar
  21. 21.
    S. E. Braslavsky, H.-J. Herbert, A. R. Holzwarth, and K. Schaffner, Chromatographic Detection of Solvent Adducts of Bilinoid Pigments, J. Chromat. 205:85 (1981).Google Scholar
  22. 22.
    I.-M. Tegmo-Larsson, S. E. Braslavsky, S. Culshaw, R. M. Ellul, C. Nicolau, and K. Schaffner, Conformation Control by Membrane of Biliverdin Dimethyl Ester Incorporated into Lipid Vesicles, J. Am. Chem. Soc. 103:7152 (1981); see also I.-M. TegmoLarsson, S. E. Braslavsky, C. Nicolau, and K. Schaffner, Biophys. Struct. Mech., Suppl. 6:112 (1980).Google Scholar
  23. 23.
    S. E. Braslavsky, H. Al-Ekabi, C. Pétrier, and K. Schaffner, Conformation Selectivity of the Photocyclization of the Biliverdin IXy and IXS Dimethyl Esters, in preparation.Google Scholar
  24. 24.
    S. E. Braslavsky, R. M. Ellul, R. G. Weiss, H. AlEkabi, and K. Schaffner, The Photoisomerization of Biliverdin Dimethyl Ester in Ethanol Measured by Laser-induced Optoacoustic Spectroscopy (LIOAS), Tetrahedron 39:in press (1983).Google Scholar
  25. 25.
    A. R. Holzwarth, J. Wendler, K. Schaffner, V. Sundström, A. Sandström, and T. Gillbro, Picosecond Kinetics of Excited State Relaxation in Biliverdin Dimethyl Ester, Isr. J. Chem. 23:in press (1983); see also idem, in: Picosecond Chemistry and Biology T. Doust and M. A. West, eds., Science Reviews, Northwood (1983).Google Scholar
  26. 26.
    H. Falk, K. Grubmayr, E. Haslinger, T. Schlederer, and K. Thirring, The Diastereomeric (Geometrically Isomeric) Biliverdin Dimethyl Esters - Structure, Configuration and Conformation, Monatsh. Chem. 109: 1451 (1978).Google Scholar
  27. 27.
    W. Kufer, E. Cmiel, F. Thümmler, W. Rüdiger, S. Schneider, and H. Scheer, Regioselective Photochemical and Acid Catalyzed Z,E Isomerization of Di-hydrobilindione as Phytochrome Model, Photochem. Photobiol. 36:603 (1982).Google Scholar
  28. 28.
    C. Krauss, C. Bubenzer, and H. Scheer, Photochemically Assisted Reaction of A-Dihydrobilindione with Nucleophiles as a Model for Phytochrome Interconversion, Photochem. Photobiol. 30:473 (1979).Google Scholar
  29. 29.
    P. Manitto and D. Monti, Addition of Sulphydryl Groups to Biliverdin, Experientia 35: 1418 (1979).Google Scholar
  30. 30.
    H. Falk, N. Müller, and T. Schlederer, A Reversible Regioselective Addition to Bilatrienes-abc, Monatsh. Chem. 11:159 (1980).Google Scholar
  31. 31.
    W. Kufer and H. Scheer, Rubins and Rubinoid Addition Products from Phycocyanin, Z. Naturforsch. 37c: 179 (1982).Google Scholar
  32. 32.
    P.-S. Song, Q. Chae, D. A. Lightner, W. R. Briggs, and D. Hopkins, Fluorescence Characteristics of Phytochrome and Biliverdins, J. Am. Chem. Soc. 95:7892 (1973).Google Scholar
  33. 33.
    S. E. Braslavsky, H. Al-Ekabi, A. R. Holzwarth, and K. Schaffner, unpublished results.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Kurt Schaffner
    • 1
  1. 1.Max-Planck-Institut für StrahlenchemieMülheim a. d. RuhrWest Germany

Personalised recommendations