Recent Advances in the Chemistry of Bile Pigments

  • Raymond Bonnett


The bile pigments have long been familiar as products of haem catabolism in the animal kingdom. In recent years their importance in the plant world — notably as biliproteins, such as phycoerythrin, phycocyanin, and phytochrome — has become increasingly evident. In a very real sense the name “bile pigment” is inappropriate for these substances, and it is perhaps more fitting to use the terms “linear tetrapyrrole” or “bilindione” to refer to the series as a whole.The term bilin is now formally assigned1 to the unsubstituted parent (1), and the naturally occurring derivatives so far known are all dihydroxy derivatives of this, essentially in the bis lactam, bilindione, tautomeric form. The commonest oxidation levels are the bilindione or verdin system (2) and the 10,23-dihydrobilindione or rubin system (3).


Boron Atom Nickel Complex Dimethyl Ester Bile Pigment Neonatal Jaundice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IUPAC/IUB Joint Commission on Biochemical Nomenclature, Nomenclature of Tetrapyrroles, Pure Appl. Chem 51: 2251 (1979) and there, section TP6.Google Scholar
  2. 2.
    H. Fischer and H. Plieninger, Synthesis of biliverdin and bilirubin, Hoppe-Seyler’s Z. Physiol. Chem 274:231 (1942) and references therein.Google Scholar
  3. 3.
    E.F. Meyer and G. Pepe, Interactive graphics with the aid of force field calculations, Amer. Cryst. Assoc. Abstr Ser. 2: 93 (1979).Google Scholar
  4. 4.
    W.S. Sheldrick, Crystal and molecular structure of biliverdin dimethyl ester, J. Chem. Soc., Perkin Trans. 2 1457 (1976).Google Scholar
  5. 5.
    R. Bonnett, J.E. Davies, and M.B. Hursthouse, Structure of bilirubin, Nature (London) 262: 326 (1976).CrossRefGoogle Scholar
  6. 6.
    R. Bonnett, J.E. Davies, M.B. Hursthouse, and G.M. Sheldrick, The structure of bilirubin, Proc. Roy. Soc. London B202: 249 (1978).Google Scholar
  7. 7.
    G. LeBas, A. Allegret, Y. Mauguen, C. de Rango, and M. Bailly, The structure of triclinic bilirubin chloroform-methanol solvate, Acta Cryst B36: 3007 (1980).Google Scholar
  8. 8.
    A. Mugnoli, P. Manitto, and D. Monti, Structure of di-isopropylammonium bilirubinate, Nature (London) 273: 568 (1978).CrossRefGoogle Scholar
  9. 9.
    W. Becher and W.S. Sheldrick, The crystal structure of mesobilirubin IXa - bis(chloroform), Acta Cryst., B34: 1298 (1978).CrossRefGoogle Scholar
  10. 10.
    W. Kuster and P. Deihle, Bilirubin and haemin, Hoppe Seyler’s Z. Physiol Chem 82: 463 (1912).Google Scholar
  11. 11.
    R.A. Velapoldi and 0. Menis, Formation and stabilities of free bilirubin and bilirubin complexes with transition and rare earth elements, Clin. Chem 17: 1165 (1971).Google Scholar
  12. 12.
    C.C. Kuenzle, R.R. Pelloni, and M.M. Weibel, A proposed novel structure for the metal chelates of bilirubin, Biochem. J 130: 1147 (1972).Google Scholar
  13. 13.
    D.W. Hutchinson, B. Johnson, and A.J. Knell, Metal complexes of bilirubin in aprotic solvents, Biochem. J 133: 399 (1973).Google Scholar
  14. 14.
    For review see J. Subramanian and J.-H. Fuhrhop, Metal complexes of open-chain tetrapyrrole pigments, in: “The Porphyrins, Vol. 2”, D. Dolphin, ed., Academic Press, New York (1978).Google Scholar
  15. 15.
    C. Krauss and H. Scheer, Long-lived ii-cation radicals of bilindionato zinc complexes, Tetrahedron Letters 3553 (1979).Google Scholar
  16. 16.
    J.V. Bonfiglio, R. Bonnett, D.G. Buckley, D. Hamzetash, M.B. Hursthouse, K.M.A. Malik, A.F. McDonagh, and Jill Trotter, Syntheses and X-ray analyses of boron and nickel complexes of octaethyl-21H,24H-bilin-1,19-dione, Tetrahedron in press.Google Scholar
  17. 17.
    J. Subramanian, J.-H. Fuhrhop, A. Salek, and A. Gossauer, Esr studies of metal complexes and 1r-radicals of biliverdin derivatives, J. Mag Res 15: 19 (1974).Google Scholar
  18. 18.
    M.J. Burke, D.C. Pratt, and A. Moscowitz, Low-temperature absorption and circular dichroism studies of phytochrome, Biochemistry 11: 4025 (1972).Google Scholar
  19. 19.
    H. von Dobeneck, U. Sommer, E. Brunner, E. Lippacher, and F. Schnierle, Classification of tripyrrenes: addition to the double bone of methylenepyrrolinones, Justus Liebig’s Ann. Chem 1934 (1973).Google Scholar
  20. 20.
    D.L. Cullen, N. van Opdenbosch, E.F. Meyer, K.M. Smith, and F. Eivazi, Crystal and molecular structure of a 4,5-dimethoxybilindione derived from etiobiliverdin IVy, J. Chem. Soc., Perkin Trans. 2 307 (1982).Google Scholar
  21. 21.
    J.V. Bonfiglio, R. Bonnett, D.G. Buckley, D. Hamzetash, M.B. Hursthouse, K.M.A. Malik, S.C. Naithani, and J. Trotter, Substitution and addition reactions of octaethyl-21H,24Hbilin-1,19-dione, a model verdin system, J. Chem. Soc., Perkin Trans. 1 1291 (1982).Google Scholar
  22. 22.
    M.S. Stoll and C.H. Gray, The preparation and characterisation of bile pigments, Biochem. J 163: 59 (1977).Google Scholar
  23. 23.
    H. Falk, N. Muller, and T. Schlederer, A regioselective reversible addition to bilatrienes-abc, Monatsch. Chem 11: 159 (1980).Google Scholar
  24. 24.
    H. Falk and T. Schlederer, A formal nucleophilic substitution of biliatrienes-abc, Monatsch. Chem 109: 1013 (1978).Google Scholar
  25. 25.
    W. Kufer and H. Scheer, The diazo reaction of bilirubin: structure of the yellow products, Tetrahedron in press (1983).Google Scholar
  26. 26.
    R. Bonnett and A.F. McDonagh, The isomeric heterogeneity of biliverdin dimethyl ester derived from bilirubin, J. Chem. Soc., Chem. Commun 238 (1970).Google Scholar
  27. 27.
    R. Bonnett, D.G. Buckley, D. Hamzetash, and A.F. McDonagh, . Pyrrole exchange reactions in the bilirubin series, Isr. J.Chem in press (1983).Google Scholar
  28. 28.
    A.F. McDonagh and F. Assisi, Direct evidence for the acid-catalysed isomeric scrambling of bilirubin IXa, J. Chem. Soc., Chem. Comm 117 (1972).Google Scholar
  29. 29.
    A.F. McDonagh, “Bile pigments: bilatrienes and 5,15-biladienes” in: “The Porphyrins”, Vol. 6, D. Dolphin ed., Academic Press, New York, 1979 and there p. 455.Google Scholar
  30. 30.
    P. Manitto and D. Monti, Reactions of biliverdins with thiobarbituric acid. A novel fragmentation reaction of bilin-1,19(21H,22H)-diones, J. Chem. Soc., Chem. Commun 178 (1980).Google Scholar
  31. 31.
    P. Manitto, Photochemistry of bilirubin, Experientia 27: 1147 ( 1971CrossRefGoogle Scholar
  32. 32.
    P. Manitto and D. Monti, Photoaddition of sulphydryl groups to bilirubin in vitro, Experientia 28: 379 (1972).Google Scholar
  33. 33.
    D. Monti and P. Manitto, A simple procedure for preparing bilirubin XIIIa, Synth. Commun 11: 811 (1981).Google Scholar
  34. 34.
    For a review see D.A. Lightner, The photoreactivity of bilirubin and related pyrroles, Photochem. Photobiol 26: 427 (1977).Google Scholar
  35. 35.
    R. Bonnett and J.C.M. Stewart, Photo-oxidation of bilirubin in hydroxylic solvents, J. Chem. Soc., Perkin Trans. 1 224 (1975).Google Scholar
  36. 36.
    H. Falk, K. Grubmayer, U. Herzig, and 0. Hofer, The configuration of the isomeric 3,4-dimethyl-5-(1H)-2,2’-pyrromethenones, Tetrahedron Lett 559 (1975).Google Scholar
  37. 37.
    A.F. McDonagh, D.A. Lightner, and T.A. Wooldridge, Geometric isomerisation of bilirubin IXa and its dimethyl ester, J. Chem. Soc., Chem. Commun 110 (1979).Google Scholar
  38. 38.
    M.S. Stoll, E.A. Zenone, J.D. Ostrow, and J.E. Zarembo, Preparation and properties of bilirubin photoisomers, Biochem. J 183: 139 (1979).Google Scholar
  39. 39.
    M.S. Stoll, N. Vicker, C.H. Gray, and R. Bonnett, Concerning the structure of photobilirubin II, Biochem. J 201: 179 (1982).Google Scholar
  40. 40.
    A.F. McDonagh, L.A. Palma, F.R. Trull, and D.A. Lightner, Phototherapy for neonatal jaundice. Configurational isomers of bilirubin, J. Am. Chem. Soc 104: 6865 (1982).Google Scholar
  41. 41.
    H. Falk, N. Muller, M. Ratzenhofer, and K. Winsauer, The structure of ‘photobilirubin’, Monatsh. Chem 113: 1421 (1982).Google Scholar
  42. 42.
    S. Onishi, S. Itoh, K. Isobe, H. Togari, H. Kitoh, and Y. Nishimura, Mechanism of development of bronze baby syndrome in neonates treated with phototherapy, Pediatrics 69: 273 (1982).Google Scholar
  43. 43.
    A.F. McDonagh, L.A. Palma, and D.A. Lightner, Phototherapy for neonatal jaundice. Stereospecific and regioselective photoisomerisation of bilirubin bound to human serum albumin and NMR characterisation of intramolecularly cyclised photo-products, J. Am. Chem. Soc 104: 6867 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Raymond Bonnett
    • 1
  1. 1.Department of ChemistryQueen Mary CollegeLondonUK

Personalised recommendations