Advertisement

Chromatography of Proanthocyanidins

  • Joseph J. Karchesy
  • Youngsoo Bae
  • Linda Chalker-Scott
  • Richard F. Helm
  • L. Yeap Foo

Abstract

Current trends in chromatographic isolation and analyses of proanthocyanidins are reviewed. Preparative isolations by low pressure column chromatography can be carried out using a variety of gel types. Often, repeated separations are required to obtain pure compounds, and it has been found advantageous to alternate each separation with a different gel type. Counter-current separation methods have seen limited application; however, with the development of new apparatus, the situation could change in the future. Paper and thin layer cellulose chromatography remain widely used for qualitative analyses of lower molecular weight oligomers. Quantitative analyses of oligomers can be carried out by high performance liquid chromatography with a variety of reversed-phase columns. Molecular weight profiles of either derivatized or underivatized proanthocyanidins can now be obtained by gel permeation chromatography.

Keywords

High Performance Liquid Chromatography Condensed Tannin Apple Juice High Performance Liquid Chromatography Analysis Preparative Isolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson, R.S.; Jacques, D.; Haslam, E.; Tanner, R.J.N. Plant proanthocyanidins. Part 1. Introduction: the isolation, structure, and distribution in nature of plant procyanidins. J. Chem. Soc. Perkin 1: 1387 (1972).CrossRefGoogle Scholar
  2. 2.
    Gupta, R.K.; Haslam, E. Plant proanthocyanidins. Part 7. Prodelphinidins from Pints sylvestris. J. Chem. Soc. Perkin 1: 1148 (1981).CrossRefGoogle Scholar
  3. 3.
    Hemingway, R.W.; Foo, L.Y.; Porter, L.J. Linkage isomerism in trimeric and polymeric 2,3-cis-procyanidins. J. Chem. Soc. Perkin Trans. 1: 1209 (1982).CrossRefGoogle Scholar
  4. 4.
    Foo, L.Y.; Porter, L.J. Prodelphinidin polymers: definition of structural units. J. Chem. Soc. Perkin Trans. 1: 1186 (1978).CrossRefGoogle Scholar
  5. 5.
    Foo, L.Y. Condensed tannins: co-occurrence of procyanidins, prodelphinidins and profisetinidins in the heartwood of Acacia baileyana. Phytochemistry 23: 2915 (1984).CrossRefGoogle Scholar
  6. 6.
    Nonaka, G.; Morimoto, S.; Nishioka, I. Tannins and related compounds. Part 13. Isolaton and structures of trimeric, tetrameric, and pentarneric proanthocyanidins from cinnamon. J. Chem. Soc. Perkin Trans. 1: 2139 (1983).Google Scholar
  7. 7.
    Hsu, F.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XXXIII. Isolation and characterization of procyanidins in Dioscorea cirrhosa Lour. Chem. Pharm. Bull. 33: 3293 (1985).CrossRefGoogle Scholar
  8. 8.
    Kashiwada, Y.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XLV. Rhubarb. (5). Isolation and characterization of flavan-3-ol and procyanidin glucosides. Chem. Pharm. Bull. 34: 3208 (1986).CrossRefGoogle Scholar
  9. 9.
    Morimoto, S.; Nonaka, G.; Nishioka, I. Tannins and related compounds. LX. Isolation and characterization of proanthocyanidins with a doubly-linked unit from Vaccinium vit is-idaea L. Chem. Pharm. Bull. 36: 33 (1988).CrossRefGoogle Scholar
  10. 10.
    Viviers, P.M.; Kolodziej, H.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 11. Intramolecular enantiomerism of the constituent units of tannins from the Anacardiaceae: stoichiometric control in direct synthesis: derivation of 1H nuclear magnetic resonance parameters applicable to higher oligomers. J. Chem. Soc. Perkin Trans. 1: 2555 (1983).CrossRefGoogle Scholar
  11. 11.
    Young, D.A.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 15. Structure of natural `angular’ profisetinidin tetraflavanoids: asymmetric induction during oligomeric synthesis. J. Chem. Soc. Perkin Trans. 1:2529 (1985).Google Scholar
  12. 12.
    Steenkamp, J.A.; Malan, J.C.S.; Roux, D.G.; Ferreira, D. Oligomeric flavanoids. Part 1. Novel dimeric profisetinidins from Colophospermum mopane. J. Chem. Soc. Perkin Trans. 1: 1325 (1988).CrossRefGoogle Scholar
  13. 13.
    Nonaka, G.; Hsu, F.; Nishioka, I. Structures of dimeric, trimeric, and tetrameric procyanidins from Areca catechu L. J. Chem. Soc., Chem. Commun.:781 (1981).Google Scholar
  14. 14.
    Mitsubishi Chemical Industries, MCI GEL for Liquid Chromatography. Technical Bulletin 603, Tokyo, Japan. Sept. 1984. 14 pp.Google Scholar
  15. 15.
    Morimoto, S.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XXX V. Proanthocyanidins with a doubly linked unit from the root bark of Cinnamomum sieboldii Meisner. Chem. Pharm. Bull. 33: 4338 (1985).Google Scholar
  16. 16.
    Ezaki-Furuichi, E.; Nonaka, G.; Nishioka, I.; Hayashi, K. Isolation and structures of procyanidins (condensed tannins) from Rhaphiolepis umbellata. Agric. Biol. Chem. 50: 2061 (1986).CrossRefGoogle Scholar
  17. 17.
    Nonaka, G.; Kawahara, O.; Nishioka, I. Tannins and related compounds. VIII. A new type of proanthocyanidin, cinchonains IIa and Ilb from Cinchona succirubra. (2). Chem. Pharm. Bull. 30: 4277 (1982).CrossRefGoogle Scholar
  18. 18.
    Foo, L.Y.; Wong, H. Diastereoisomeric leucoanthocyanidins from the heartwood of Acacia melanoxylon. Phytochemistry 25: 1961 (1986).CrossRefGoogle Scholar
  19. 19.
    Sun, D.; Wong, H.; Foo, L.Y. Proanthocyanidin dimers and polymers from Quercus dentata. Phytochemistry 26: 1825 (1987).CrossRefGoogle Scholar
  20. 20.
    Morimoto, S.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XXXVIII. Isolation and characterization of flavan-3-ol glucosides and procyanidin oligomers from cassia bark (Cinnamomum cassia Blume). Chem. Pharm. Bull. 34: 633 (1986).CrossRefGoogle Scholar
  21. 21.
    Morimoto, S.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XXXIX. Procyanidin C-glucosides and an acylated flavan-3-ol glucoside from the barks of Cinnamomum cassia Blume and C. obtusifolium Nees. Chem. Pharm. Bull. 34: 643 (1986).CrossRefGoogle Scholar
  22. 22.
    Derdelinckx, G.; Jerumanis, J.; Separation of malt and hop proanthocyanidins on Fractogel TSK HW-40 (S). J. Chromatography 285: 231 (1984).CrossRefGoogle Scholar
  23. 23.
    Delcour, J.A.; Serneels, E.J.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 13. The first 2,3-trans-3,4-cis procyanidins: sequence of units in a ‘trimer’ of mixed stereochemistry. J. Chem. Soc. Perkin Trans. 1: 669 (1985).CrossRefGoogle Scholar
  24. 24.
    Czochanska, Z.; Foo, L.Y.; Newman, R.H.; Porter, L.J. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. J. Chem. Soc. Perkin Trans. 1: 2278 (1980).CrossRefGoogle Scholar
  25. 25.
    Foo, L.Y.; Porter, L.J. The phytochemistry of proanthocyanidin polymers. Phytochemistry 19: 1747 (1980).CrossRefGoogle Scholar
  26. 26.
    Nonaka, G.; Muta, M.; Nishioka, I. Myricatin, a galloyl flavanonol sulfate and prodelphinidin gallates from Myrica rubra. Phytochemistry 22: 237 (1983).CrossRefGoogle Scholar
  27. 27.
    Nonaka, G.; Kawahara, O.; Nishioka, I. Tannins and related compounds. XV. A new class of dimeric flavan-3-ol gallates, theasinensins A and B, and proanthocyanidin gallates from green tea leaf. Chem. Pharm. Bull. 31: 3906 (1983).CrossRefGoogle Scholar
  28. 28.
    Kashiwada, Y.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XLVIII. Rhubarb. (7). Isolation and characterization of new dimeric and trimeric procyanidins. Chem. Pharm. Bull. 34: 4083 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    Putman, L.J.; Butler, L.G. Fractionation of condensed tannins by counter-current chromatography. J. Chromatography 318: 85 (1985).CrossRefGoogle Scholar
  30. 30.
    Young, D.A.; Kolodziej, H.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 16. Stereochemical differentiation of the first “angular” (2S,3R)-profisetinidin tetraflavanoids from Rhus lancea (Karree) and the varying dynamic behaviour of their derivatives. J. Chem. Soc. Perkin Trans. 1 2537 (1985).CrossRefGoogle Scholar
  31. 31.
    Young, E.; Brandt, E.V.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 17. Oligomeric (2R,3S)-3,3’,4’,7,8-pentahydroxyflavans: atropisomerism and conformation of biphenyl and m-t erphenyl analogues from Pro s o p i s g l a n d u l o s a(“Mesquite”). J. Chem. Soc. Perkin Trans. 1: 1737 (1986).Google Scholar
  32. 32.
    Viviers, P.M., Botha, J.J.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 7. Angular [4,6: 4,8]-prorobinetinidin triflavanoids from black wattle (“Mimosa”) bark extract. J. Chem. Soc. Perkin Trans. 1: 17 (1983).CrossRefGoogle Scholar
  33. 33.
    Zhang, T.Y.; Xiao, R.; Xiao, Z.Y. Pannel, L.K.; Ito, Y. Rapid separation of flavanoids by analytical highspeed counter-current chromatography. J. Chromatography 445: 199 (1988).CrossRefGoogle Scholar
  34. 34.
    Haslam, E. Chemistry of Vegetable Tannins. Academic Press, New York pp. 14–30 (1966).Google Scholar
  35. 35.
    Roux, D.G.; Evelyn, S.R. Condensed tannins. 1. A study of complex leuco-anthocyanins present in condensed tannins. Biochem. J. 69: 530 (1958).PubMedGoogle Scholar
  36. 36.
    Roux, D.G. Methods of fractionation and identification of constituents of condensed tannins. J. Am. Leather Chem. Assn. 53: 384 (1959).Google Scholar
  37. 37.
    Drewes, S.E.; Roux, D.G.; Saayman, H.M.; Eggers, S.H.; Feeny, J. Some stereochemically identical biflavanols from the bark tannins of Acacia mearnsii. J. Chem. Soc. (C): 1302 (1967).Google Scholar
  38. 38.
    Fourie, T.G.; DuPreez, I.C.; Roux, D.G. 3’,4’,7,8-tetrahydroxyflavonoids from the heartwood of Acacia nigrescens and their conversion products. Phytochemistry 11:1763 (1972).Google Scholar
  39. 39.
    Malan, E.; Roux, D.G. Flavonoids and tannins of Acacia species. Phytochemistry 14: 1835 (1975).CrossRefGoogle Scholar
  40. 40.
    Delcour, J.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 9. The condensation sequence of leucocyanidin with (+)-catechin and with the resultant procyanidin. J. Chem. Soc. Perkin Trans. 1: 1711 (1983).CrossRefGoogle Scholar
  41. 41.
    Karchesy, J.J.; Hemingway, R.W. Condensed tannins: (40 → 8;2β→ 0 → 7)–linked procyanidins in Arachis hypogea L. J. Agric. Food Chem. 34: 966 (1986).CrossRefGoogle Scholar
  42. 42.
    Laks, P.E.; Hemingway, R.W. Condensed tannins: base catalysed reactions of polymeric procyanidins with toluene-a-thiol. Lability of the interflavanoid bond and pyran ring. J. Chem. Soc. Perkin Trans. 1: 465 (1987).CrossRefGoogle Scholar
  43. 43.
    Bate-Smith, E.C. Colour reactions of flowers attributed to (a) flavanols and (b) carotenoid oxides. J. Exper. Bot. 4: 1 (1953).CrossRefGoogle Scholar
  44. 44.
    Roux, D.G. Maihs, A.E. Selective spray reagents for the identification and estimation of flavonoid compounds associated with condensed tannins. J. Chromatog. 4: 65 (1960).CrossRefGoogle Scholar
  45. 45.
    Hemingway, R.W.; Karchesy, J.J.; McGraw, G.W.; Wielesek, R.A. Heterogeneity of interflavanoid bond location in loblolly pine bark procyanidins. Phytochemistry 22: 275 (1983).CrossRefGoogle Scholar
  46. 46.
    World Health Organization, International Agency for Research on Cancer, IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. IARC Monographs Supplement 4: 56–67 (1982).Google Scholar
  47. 47.
    Lea, A.G.H. The phenolics of ciders: oligomeric and polymeric procyanidins. J. Sci. Food Agric. 29: 471 (1978).PubMedCrossRefGoogle Scholar
  48. 48.
    Lea, A.G.H.; Bridle, P.; Timberlake, C.F.; Singleton, V.L. The procyanidins of white grapes and wines. Am. J. Enol. 30: 289 (1979).Google Scholar
  49. 49.
    Daigle, D.J.; Conkerton, E.J. Analysis of flavonoids by HPLC. J. Liquid Chromatography 6: 105 (1983).CrossRefGoogle Scholar
  50. 50.
    Vande Casteele, K.; Geiger, H.; DeLoose, R.; Van Sumere, C.F. Separation of some anthocyanidins, anthocyanins, proanthocyanidins and related substances by reversed-phase high-performance liquid chromatography. J. Chromatog. 259: 291 (1983).CrossRefGoogle Scholar
  51. 51.
    Lea, A.G.H. High performance liquid chromatography of cider procyanidins. J. Sci. Food Agric. 30: 833 (1979).CrossRefGoogle Scholar
  52. 52.
    Lea, A.G.H. Reversed-phase gradient high-performance liquid chromatography of procyanidins and their oxidation products in ciders and wines, optimised by Snyder’s procedures. J. Chromatog. 194: 62 (1980).CrossRefGoogle Scholar
  53. 53.
    Lea, A.G.H. Reversed-phase high-performance liquid chromatography of procyanidins and other phenolics in fresh and oxidising apple juices using a pH shift technique. J. Chromatog. 238: 253 (1982).CrossRefGoogle Scholar
  54. 54.
    Wilson, E.L. High-pressure liquid chromatography of apple juice phenolic compounds. J. Sci. Food Agric. 32: 257 (1981).CrossRefGoogle Scholar
  55. 55.
    Salagoity-Auguste, M.; Bertrand, A. Wine phenolics - analysis of low molecular weight components by high performance liquid chromatography. J. Sci. Food Agric. 35: 1241 (1984).CrossRefGoogle Scholar
  56. 56.
    Lunte, S.M.; Blankenship, K.D.; Read, S.A. Detection and identification of procyanidins and flavanols in wine by dual-electrode liquid chromatography-electro-chemistry. Analyst 113: 99 (1988).PubMedCrossRefGoogle Scholar
  57. 57.
    Galletti, G.C.; Self, R. The polyphenols (syn. vegetable tannins) of grape skins and pressed fruit residues. Annaldi di Chimica 76: 195 (1986).Google Scholar
  58. 58.
    McMurrough, I. High-performance liquid chromatography of flavonoids in barley and hops. J. Chromatography 218: 683 (1981).CrossRefGoogle Scholar
  59. 59.
    Mulkay, P.; Touillaux, R.; Jerumanis, J. Proanthocyanidins of barley: separation and identification. J. Chromatography 208: 419 (1981).CrossRefGoogle Scholar
  60. 60.
    Jerumanis, J. Quantitative analysis of flavanoids in barley, hops and beer by high-performance liquid chromatography (HPLC). J. Inst. Brew. 91: 250 (1985).Google Scholar
  61. 61.
    Stafford, H.A.; Lester, H.H. Procyanidins (condensed tannins) in green cell suspension cultures of Douglas fir compared with those in strawberry and avocado leaves by means of C18-reversed-phase chromatography. Plant Physiol. 66: 1085 (1980).PubMedCrossRefGoogle Scholar
  62. 62.
    Stafford, H.A.; Lester, H.H. Proanthocyanidins and potential precursors in needles of Douglas fir and in cell suspension cultures derived from seedling shoot tissues. Plant Physiol. 68: 1035 (1981).PubMedCrossRefGoogle Scholar
  63. 63.
    Stafford, H.A.; Kreitlow, K.S.; Lester, H.H. Comparson of proanthocyanidins and related compounds in leaves and leaf-derived cell cultures of Ginkgo bioloba L., Pseudotsuga menziesii Franco, and Ribes sanguineum Pursh. Plant Physiol. 82: 1132 (1986).PubMedCrossRefGoogle Scholar
  64. 64.
    Muhitch, M.J.; Fletcher, J.S. Isolation and identification of the phenols of Paul’s scarlet rose stems and stein-derived suspension cultues. Plant Physiol. 75: 592 (1984).PubMedCrossRefGoogle Scholar
  65. 65.
    Glennie, C.W.; Kaluza, W.Z.; Van Niekerk, P.J. High-performance liquid chromatography of procyanidins in developing sorghum grain. J. Agric. Food Chem. 29: 965 (1981).CrossRefGoogle Scholar
  66. 66.
    Gujer, R.; Magnolato, D.; Self, R. Glucosylated flavonoids and other phenolic compounds from sorghum. Phytochemistry 25: 1431 (1986).CrossRefGoogle Scholar
  67. 67.
    Samejima, M.; Yoshimoto, T.; High performance liquid chromatography of proanthocyanidins and related compounds. Mokuzai Gakkaishi 27: 658 (1981).Google Scholar
  68. 68.
    Chalker-Scott, L.; Karchesy, J.J. (unpublished results).Google Scholar
  69. 69.
    Samejima, M.; Yoshimoto, T. Procyanidins from the inner bark of sugi (Cryptomeria japonica D.Don). Mokuzai Gakkaishi 25: 671 (1979).Google Scholar
  70. 70.
    Beart, J.E.; Lilley, T.H.; Haslam, E. Polyphenol interactions. Part 2. Covalent binding of procyanidins to proteins during acid-catalysed decomposition; observations on some polymeric proanthocyanidins. J. Chem. Soc. Perkin Trans. 2:1439 (1985).Google Scholar
  71. 71.
    Chiavari, G.; Vitali, P.; Galletti, G.C. Electrochemical detection in the high-performance liquid chromatography of polyphenols (vegetable tannins). J. Chromatog. 392: 426 (1987).CrossRefGoogle Scholar
  72. 72.
    Hemingway, R.W.; Foo, L.Y.; Porter, L.J. Polymeric proanthocyanidins: interfiavanoid linkage isomerism in (epicatechin-4)-(epicatechin-4)-catechin procyanidins. J. Chem. Soc. Commun.: 320 ( 1981.Google Scholar
  73. 73.
    Foo, L.Y.; Porter, L.J. Enantiomerism in natural procyanidin polymers: use of epicatechin as a chiral resolution reagent J. Chem. Soc., Chem. Commun.:241 (1981).Google Scholar
  74. 74.
    Williams, V.M.; Porter, L.J.; Hemingway, R. W. Molecular weight profiles of proanthocyanidin polymers. Phytochemistry 22: 569 (1983).CrossRefGoogle Scholar
  75. 75.
    Bae, Y.S.; Douglas-fir inner bark procyanidins: sulfonation, isolation, and characterization. PhD Thesis, Oregon State University, Corvallis, (1989).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Joseph J. Karchesy
    • 1
  • Youngsoo Bae
    • 1
  • Linda Chalker-Scott
    • 1
  • Richard F. Helm
    • 1
  • L. Yeap Foo
    • 2
  1. 1.Department of Forest ProductsOregon State UniversityCorvallisUSA
  2. 2.Chemistry DivisionD.S.I.RPetoneNew Zealand

Personalised recommendations