Chemical Nature of Phlobaphenes

  • L. Yeap Foo
  • Joseph J. Karchesy


Phlobaphenes are reddish-colored, water-insoluble phenolic substances that are believed to be related to co-occurring condensed tannins. The term is also used to describe the red insoluble material produced by treating condensed tannins with mineral acid. The chemical composition of the “natural” phlobaphenes is complex and linked to other extraneous materials in addition to condensed tannins. Phlobaphenes are variable from plant source to plant source and display a variety of functional groups not seen in the condensed tannins. Douglas-fir phlobaphenes are composed of a mixture of polymeric procyanidins, dihydroquercetin, carbohydrate (glucosyl), and methoxyl moieties. Water insolubility appears to be due to the abundance of methoxyl groups.


Condensed Tannin Methoxyl Group Western Hemlock Outer Bark Extraneous Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stahelin, C.; Hofstetter, J. Chemische untersuchung einiger Rinden. Annal. d. Chemis. u. Pharm. 51: 63 (1844).CrossRefGoogle Scholar
  2. 2.
    Hergert, H.L. Economic importance of flavonoid compounds: wood and bark. In: Geiss-man, T.A. (ed.) The Chemistry of Flavonoid Compounds, The MacMillan Co., New York, pp. 553–592 (1962).Google Scholar
  3. 3.
    Harvey, A. Tannin Materials with Notes of Tanning Extract Manufacture. Crosby, Lockwood and Son. London, 182p. (1921).Google Scholar
  4. 4.
    Haslam, E. Chemistry of Vegetable Tannins. Academic Press, New York, 179 p. (1966).Google Scholar
  5. 5.
    Becker, E.S.; Kurth, E.F. The chemical nature of the extractives from the bark of red fir. Tappi 41: 380 (1958).Google Scholar
  6. 6.
    Hergert, H.L.; Blaricom, L.E.; Steinberg, J.C.; Grey, K.R. Isolation and properties of dispersants from western hemlock bark. For. Prod. J. 15: 485 (1965).Google Scholar
  7. 7.
    Mullick, D.B. Reddish purple pigments in the secondary periderm tissues of western North American conifers. Phytochemistry 8: 2205 (1969).CrossRefGoogle Scholar
  8. 8.
    Swan, E.P. Characteristics of a phlobaphene from western red cedar bark. For. Prod. J. 13: 195 (1963).Google Scholar
  9. 9.
    Zavarin, E.; Snajberk, K. The chemistry of the natural phlobaphenes. III. Pyrolysis of the phlobaphenes from five representative softwood species. Tappi 48: 612 (1965).Google Scholar
  10. 10.
    Buchanan, M.A.; Lewis, H.F.; Kurth, E.F. Chemical nature of redwood tannin and phobaphene. Ind. Eng. Chem. 36: 907 (1944).CrossRefGoogle Scholar
  11. 11.
    Zavarin, E.; Snajberk, K.; Smith, R.M. The chemistry of the natural phlobaphenes. II. Further pyrolysis studies of the phlobaphenes from redwood, (Sequoia sempervirens Endl.) Tappi 48: 574 (1965).Google Scholar
  12. 12.
    Zavarin, E.; Snajberk, K. The chemistry of the natural phlobaphenes. I. Pyrolysis of the phlobaphenes from redwood (Sequoia sempervirens Endl.) Tappi 46: 320 (1963).Google Scholar
  13. 13.
    Hubbard, J.K.; Kurth, E.F. Douglas-fir bark tannin. J. Am. Leather Chem. Assoc. 44: 604 (1949).Google Scholar
  14. 14.
    Hergert, H.L.; Kurth, E.F. The chemical nature of the cork from Douglas-fir bark. Tappi 35: 59 (1952).Google Scholar
  15. 15.
    Kurth, E.F.; Aida. K.; Fujii, M. Alcoholysis products from bark flavonoids and polymeric phenolics. Tappi 51: 461 (1968).Google Scholar
  16. 16.
    Endres, H.; Stadler, P.; Crone, F.V.D. Uber die Gerbstoffe der Fichtenrinde. X. Mitteilung. Untersuchung uber die Sulfitierung der Phlobaphene des Fichtenrindengerbstoffes. Das Leder 11: 1 (1960).Google Scholar
  17. 17.
    Ishak, M.S. Phlobaphenes of Acacia nilotica bark and their sulphitation. Leather Sci. 20: 41 (1973).Google Scholar
  18. 18.
    Ishak, M.S. Some aspects on the chemistry of phlobaphenes from Acaia nilotica bark. Egypt. J. Chem. 17: 699 (1974).Google Scholar
  19. 19.
    Murko, V.D.; Ramic, S.; Kekic, M. Die Gerbstoffe der Dalmatinischen Salvia officinalis and deren Veranderung wahrend der Lagerung. Planta Medica 25: 295 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    Styles, E.D.; Oldriska, C. Genetic control of 3-hydroxy-and 3-deoxy-flavonoids in Zea mays. Phytochemistry 14: 413 (1975).CrossRefGoogle Scholar
  21. 21.
    Styles, E.D.; Oldriska, C. The genetic control of flavonoid synthesis in maize. Can. J. Genet. Cytol. 19: 289 (1977).Google Scholar
  22. 22.
    Mathur, J.M.S.; Sharma, N.D. Unusual occurrence of phlobaphenes: the non-anthocyanic co-pigments in maize embryo. Maize Genetics Cooperation Newsletter 50: 48 (1976).Google Scholar
  23. 23.
    Bate-Smith, E.C. Luteoforol (3’,4,4’,5,7-pentahydroxyflavan) in Sorghum vulgare L. Phytochemistry 8: 1803 (1969).CrossRefGoogle Scholar
  24. 24.
    Dhake, J.D.; Girhe, S.N. Chemical nature of extraneous components of Bija Pterocarpus marsupium Roxb. IPPTA 21: 63 (1984).Google Scholar
  25. 25.
    Duran, N.; Rojas, H.; Nascimento, M.G.; Freer, J.; Baeza, J. Biomass photochemistry II. Chemiluminescence in the peroxidation of tannin, phlobaphene and catechin. Cellulose Chem. Technol. 18: 411 (1984).Google Scholar
  26. 26.
    Duran, N.; Baeza, J.; Freer, J.; Rojas, N.; Nascimento, M.G. Biomass photochemistry, VI: Light-induced oxidation of phlobaphene from wood. Polymer Photochem. 6: 393 (1985).CrossRefGoogle Scholar
  27. 27.
    Baeza, J.; Freer, J.; Rojas, N.; Duran, N. Conductimetric method for the determination of phenolic groups in phlobaphene and tannin from Pinus radiata D. Don: solvent effect. Analyst 110: 1407 (1985).CrossRefGoogle Scholar
  28. 28.
    Young, D.A.; Cronje, A.; Botes, A.L.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 14. Biflavanoid profisetinidins as synthons. The acid induced `phlobaphene’ reaction. J. Chem. Soc. Perkin Trans. 1: 2521 (1985).CrossRefGoogle Scholar
  29. 29.
    Steenkamp, J.A.; Steynberg, J.P.; Brandt, E.V.; Ferreira, D.; Roux, D.G., Phlobatannins, a novel class of ring-isomerized condensed tannins. J. Chem. Soc. Chem. Commun.: 1678 (1985).Google Scholar
  30. 30.
    Steynberg, J.P.; Young, D.A.; Burger, J.F.W.; Ferreira, D.; Roux, D.G. Phlobatannins via facile ring isomerizations of profisetinidin and prorobinetinidin condensed tannin units. J. Chem. Soc. Chem. Commun.: 1013 (1986).Google Scholar
  31. 31.
    Foo, L.Y.; Karchesy, J.J. Procyanidin polymers of Douglas-fir bark. Structure from degradation with phloroglucinol. Phytochemistry (in press).Google Scholar
  32. 32.
    Porter, L.J.; Newman, R.H.; Foo, L.Y.; Wong, H.; Hemingway, R.W. Polymeric proanthocyanidins. 13C-NMR studies of procyanidins. J. Chem. Soc. Perkin Trans. 1:1217 (1982).Google Scholar
  33. 33.
    Markham, K.R.; Chari, V.M.; Mabry, T.J. Carbon-13 NMR spectroscopy of flavonoids. In: Harborne, J.B.; Mabry, T. J. (eds.) The Flavonoids: Advances in Research. Chapman and Hall, London, pp. 19–134 (1982).Google Scholar
  34. 34.
    Foo, L.Y.; Karchesy, J.J. Polyphenolic glycosides from Douglas-fir inner bark. Phytochemistry (in press).Google Scholar
  35. 35.
    Agrawal, P.K., Thakur, R.S., 13C NMR spectroscopy of lignin and neolignan derivatives. Magnetic Resonance in Chemistry 23: 389 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • L. Yeap Foo
    • 1
  • Joseph J. Karchesy
    • 2
  1. 1.Chemistry DivisionD.S.I.RPetoneNew Zealand
  2. 2.Department of Forest ProductsOregon State UniversityCorvallisUSA

Personalised recommendations