Advertisement

The Enzymology of Proanthocyanidin Biosynthesis

  • Helen A. Stafford

Abstract

The cell-free enzymology of the biosynthesis of the 2,3-trans forms of flavan-3-ols and the oligomeric 2,3-trans proanthocyanidins is now known except for the final condensation step to the oligomers. The individual enzymic steps at the C-15 level are described. A speculative model to explore the origin of the still unknown 2,3-cis pathway and its relationship to the 2,3-trans pathway is presented. This model accounts for the radioactive phenylalanine feeding experiments published by various laboratories. The pathway is also discussed in terms of the regulation of proanthocyanidin biosynthesis in gymnosperms, especially in Douglas-fir.

Keywords

Endoplasmic Reticulum Cell Suspension Culture Condensed Tannin Anthocyanin Biosynthesis Extension Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haslam, E. Vegetable tannins. In: Swain, T.; Harbonne, J.B.; VanSumere, C. F. (eds.) Biochemistry of Plant Phenolics (Recent Advances in Phytochemistry). Plenum Publishing Co., New York, 12:475 (1979).Google Scholar
  2. 2.
    Freudenberg, K.; Weinges, K. Catechins and flavonoid tannins. In: Geissman, T.A. (ed.) The Chemistry of Flavonoid Compounds. MacMillin, New York, p. 197 (1962)Google Scholar
  3. 3.
    Stafford, H.A.; Kreitlow, K.S.; Lester, H.H. Comparison of proanthocyanidins of Pseudotsuga menziesii Franco, and Ribes sanguineum Pursh. Plant Physiol. 82: 1132 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    Stafford, H.A.; Smith, E.C.; Weider, R.M. The development of proanthocyanidins (condensed tannins) and other phenolics in bark of Pseudotsuga menziesii Franco. Can. J. Bot. (in press).Google Scholar
  5. 5.
    Stafford, H.A.; Lester, H.H. Proanthocyanidins (condensed tannins) in green cell suspension cultures of Douglas fir compared with those in strawberry and avocado leaves by means of C-18-reversed phase chromatography. Plant Physiol. 66: 1085 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    Stafford, H.A.; Lester H.H. Proanthocyanidins and potential precursors in needles of Douglas-fir and in cell suspension cultures derived from seedling shoot tissues. Plant Physiol. 68: 1035 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    Grisebach, H. Biosynthesis of flavonoids. In: Higuchi, T. (ed.) Biosynthesis and Biodegradation of Wood Components. Academic Press, New York. p. 291 (1985).Google Scholar
  8. 8.
    Heller, W.; Forkmann, G. Biosynthesis. In: Harborne, J.B. (ed.) The Flavonoids, Advances in Research Since 1980. Academic Press, New York, p. 399 (1988).Google Scholar
  9. 9.
    Ellis, C J; Foo, L.Y.; Porter, L.J. Enantiomerism: a characteristic of the proanthocyanidins of the monocotyledonae. Phytochemistry 22: 483 (1983).CrossRefGoogle Scholar
  10. 10.
    Neish, A.C. Major pathways of biosynthesis of phenols. In: Harborne, J.B. (ed.) Biochemistry of Phenolic Compounds. Academic Press, New York, p. 295 (1964).Google Scholar
  11. 11.
    Heller, W.; Hahlbrock, K. Highly purified ‘flavanone’ synthase from parsley catalyzes the formation of naringenin chalcone. Arch. Biochem. Biophy. 200: 617 (1980).CrossRefGoogle Scholar
  12. 12.
    Hahlbrock, K.; Zilg, H.; Grisebach, H. Stereochemistry of the enzymatic cyclization of 4,2’,4’-trihydroxychalcone to 7,4-dihydroxyflavanone by isomerases from mung bean seedlings. Ear. J. Biochem. 15: 13, (1970).CrossRefGoogle Scholar
  13. 13.
    Zapromotov, M.N.; Grisebach, H. Dihydrokaempferol as precursor of catechins in the tea plant. Z. Naturforsch. 28c, 113, (1973).Google Scholar
  14. 14.
    Jacques D.; Opie, C.T.; Porter, L.J.; Haslam, E. Plant proanthocyanidins. Part 4. Biosynthesis of procyanidins and observations on the metabolism of cyanidin in plants. J. Chem. Soc. Perkin Trans. 1: 1637 (1977).CrossRefGoogle Scholar
  15. 15.
    Stafford, H.A.; Shimamoto, M.; Lester, H.H. Incorporation of [14C] phenylalanine into flavan-3-ols and procyanidins in cell suspension cultures of Douglas fir. Plant Physiol. 69: 1055 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    Stafford, H.A. Enzymic regulation of procyanidin biosynthesis: lack of flav-3-en-3-ol intermediate. Phytochemistry 22: 2643 (1983).CrossRefGoogle Scholar
  17. 17.
    Foo, L.Y. Configuration and conformation of dihydroflavonols from Acacia melanoxylon. Phytochemistry 26: 813 (1987).CrossRefGoogle Scholar
  18. 18.
    Jensen, R. Tyrosine and phenylalanine biosynthesis: relationship between alternative pathways, regulation and subcellular location. In: Conn, E.E. (ed.) The Shikimic Acid Pathway. Recent Advances in Phytochemistry. Plenum Publishing Co., New York, 20:57 (1986).Google Scholar
  19. 19.
    Jahnen, W.; Hahlbrock, K. Differential regulation and tissue-specific distribution of enzymes of phenylpropanoid pathways in developing parsley seedlings. Planta 173: 453 (1988).CrossRefGoogle Scholar
  20. 20.
    Knoblock, K.; Hahlbrock, K. 4-Coumarate:CoA ligase from cell suspension cultures of Petroselinim hortsense. Hoffm. Partial purification, substrate specificity, and further properties. Arch. Biochem. Biophys. 184: 237 (1977).CrossRefGoogle Scholar
  21. 21.
    Grand, C.; Boudet, A.; Boudet, A.M. Isoenzymes of hydroxycinnamate:CoA ligase from poplar stems: properties and tissue distribution. Planta 158: 225 (1983).CrossRefGoogle Scholar
  22. 22.
    Stumpf, P.K. Biosynthesis of saturated fatty acids. In: Stumpf, P.K.; Conn, E.E. (eds.) The Biochemistry of Plants. Academic Press, New York, 9:121 (1981).Google Scholar
  23. 23.
    Finlayson, S.A.; Dennis, D.T. Acetyl-coenzyme A carboxylase from the developing endosperm of Ricinus communis. Arch. Biochem. Biophys. 225: 586 (1983).CrossRefGoogle Scholar
  24. 24.
    Beerhues, L.; Wiermann, R. Chalcone synthases from spinach (Spinacea oleracea L.I.) Purification, peptide patterns, and immunological properties of different forms. Planta 173: 532 (1988).CrossRefGoogle Scholar
  25. 25.
    Beerhues, L.: Robenek, H.; Wiermann, R. Chalcone synthases from spinach (Spinacea oleracea L.). II. Immunofluorescence and immunogold localization. Planta 173: 544 (1988).CrossRefGoogle Scholar
  26. 26.
    Koes, R.E.; Spelt, C.E. Mol. J.N.M.; Gerata, G.M. The chalcone synthase multigene family of Petunia hybrida (V30): sequence homology, chromasomal localization and evolutionary aspects. Plant Molec. Bio. 10: 159 (1987).CrossRefGoogle Scholar
  27. 27.
    Ryder, T.B.; Hedrick, S.A.; Bell, J.N.; Liang, X.; Clouse, S.D.; Lamb, C.J. Organization and differential activation of gene family encoding the plant defense enzyme chalcone synthase in Phaseous vulgaris. Mol. Gen. Genet 210: 219 (1987).CrossRefGoogle Scholar
  28. 28.
    Hrazdina, G.; Zobel, A.M.; Hoch, H.C. Biochemical, immunological, and irnmunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proc. Natl. Acad. Sci. 84: 8966 (1987).PubMedCrossRefGoogle Scholar
  29. 29.
    Ayabe, S.; Udagawa, A.; Furuya, T. NAD(P)H-dependent 6’-deoxychalcone synthase activity in Glycyrrhiza cells induced by yeast extract. Arch. Biochem. Biophys. 261: 458 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    Welle, R.; Grisebach, H. Isolation of a novel NADPH-dependent reductase which coacts with chalcone synthase in the biosynthesis of 6’-deoxychalcone. FEBS Lett. 236: 221 (1988).CrossRefGoogle Scholar
  31. 31.
    Dixon, R.A.; Blyden, E.R.; Robbins, M.P.; Van Tunen, A.J.; Mol, J.N. Comparative biochemistry of chalcone isomerases. Phytochemistry 27: 2801 (1988).Google Scholar
  32. 32.
    van Tunen, A.J.; Koes, R.E.; Spelt, C.E.; van der Krol, A.R.; Stuitje, R.; Mol, N.M. Cloning of two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J. 7: 1257 (1988).PubMedGoogle Scholar
  33. 33.
    Bednar, R.A.; Hadcock, J.R. Purification and characterization of chalcone isomerase from soybeans. J. Biol. Chem. 263: 9582 (1988).PubMedGoogle Scholar
  34. 34.
    Haslam, E. Secondary metabolism - fact and fiction. Natural Product Reports 3: 217 (1986).CrossRefGoogle Scholar
  35. 35.
    Forkman, G.; Heller, W.; Grisebach, H. Anthocyanin biosynthesis of Matthiala incana flavanone 3- and flavonoid 3’-hydroxylases. Z. Naturforsch. 35c: 691 (1980).Google Scholar
  36. 36.
    Stotz, G.; Forkmann, G. Hydroxylation of the B-ring of flavonoids in the 3’- and 5’-position with extracts from flowers of Verbena hybrida. Z. Naturforsch. 37c: 19 (1982).Google Scholar
  37. 37.
    Britsch L.; Grisebach, H. Purfication and characterization of (2S)- flavanone-3-hydroxylase from Petunia hybrida. Ear. J. Biochem. 156: 569 (1986).CrossRefGoogle Scholar
  38. 38.
    Stotz, G.; de Vlaming, P.; Wiering, H.; Schram, A.W.; Forkmann, G. Genetic and biochemical studies on flavonoid 3’-hydroxylation in flowers of Petunia hybrida. Theor. App. Gen. 70: 300 (1985).Google Scholar
  39. 39.
    Stafford, H.A.; Lester, H.H. Enzymic and non-enzymic reduction of (+)-dihydroquercetin to its 3,4-diol. Plant Physiol. 70: 695 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    Stafford, H.A.; Lester, H.H. Flavan-3-ol biosynthesis, The conversion of (+)-dihydromyricetin to its flavan-3,4-diol (leucodelphinidin) and to (+)-gallocatechin by reductases extracted from tissue cultures of Ginkgo biloba and Pseudotsuga menziesii. Plant Physiol. 78: 791 (1985).Google Scholar
  41. 41.
    Botha, J.J.; Ferreira, D.; Roux, D. Synthesis of condensed tannins. Part 4. A direct biomimetic approach to [4,6]- and [4,8]-biflavanoids. J. Chem. Soc. Perkin Trans. 1:1235 (1981). Google Scholar
  42. 42.
    Porter, L.J.; Foo, L.Y. Leucocyanidin: synthesis and properties of (2R,3S,4R)-(+)-3,4,5,7,3’,4’-hexahydroxyflavan. Phytochemistry 21: 2947 (1982).CrossRefGoogle Scholar
  43. 43.
    Kristiansen, K.N. Biosynthesis of proanthocyanidins in barley: genetic control of the conversion of dihydroquercetin to catechin and procyanidins. Carlsberg Res. Commun. 49: 503 (1984).CrossRefGoogle Scholar
  44. 44.
    Kristiansen, K.N. Conversion of (+)- dihydroquercetin to (+)-2,3-trans-3,4-cis-leucoyanidin and (+)-catechin with an enzyme extract from maturing grains of barley. Carlsberg Res. Commun. 51: 51 (1986).CrossRefGoogle Scholar
  45. 45.
    Stafford, H.A.; Lester, H.H.; Porter, L.J. Chemical and enzymatic synthesis of monomeric procyanidins (leucocyanidins or 3’,4’,5’,7- tetrahydroxyflavan-3,4-diols) from (2R, 3R)dihydroquercetin. Phytochemistry 24: 333 (1985).CrossRefGoogle Scholar
  46. 46.
    Ishikura, N.; Murakami, H.; Fujii, Y. Conversion of (+)-dihydroquercetin to 3,4-cis-leucocyanidin by a reductase extracted from cell suspension cultures of Cryptomeria japonica. Plant Cell Physiol. 29: 795 (1988).Google Scholar
  47. 47.
    Reddy, A.R.; L Britsch, F.; Salamini, F.; Saedler, H.; Rohde, W. The Al (anthocyanin-1) locus in Zea mays encodes dihydroquercetin reductase. Plant Sci. 52: 7 (1987).CrossRefGoogle Scholar
  48. 48.
    Fischer, D.; Stich, K.; Britsch, L.; Grisebach, H. Purification and characterization of (+)dihydroflavanol 4-reductase from flowers of Dahlia variabilis. Arch. Biochm. Biophys. 264: 40 (1988).CrossRefGoogle Scholar
  49. 49.
    Heller, W.; Forkman, G.; Britsch, L.; Grisebach, H. Enzymatic reduction of (+)-dihydroflavonols to flavan-3,4-cis-diols with flower extracts from Matthioila incana and its role in anthocyanin biosynthesis. Planta 165: 284 (1985).CrossRefGoogle Scholar
  50. 50.
    Schwarz-Sommer, Z.; Shepherd, N.; Tacke, E.; Gierl, A.; Rohde, W.; Leclercq, L.; Mattes, M.; Berndtgen, R.; Peterson, P.A.; Saedler, H. Influence of transposable elements on the structure and function of the Al gene of Zea mays.. EMBO J. 6: 287 (1987).Google Scholar
  51. 51.
    Meyer, P.; Heidmann, I.; Forkmann, G.; Saedler, H. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 677 (1987).PubMedCrossRefGoogle Scholar
  52. 52.
    Guyer, R.; Magnoloto, D.; Self, R. Glucosylated flavanoids and other phenolic compounds from sorghum. Phytochemistry 25: 1431 (1986).CrossRefGoogle Scholar
  53. 53.
    Porter, L.J. Flavans and proanthocyanidins. In: Harborne, J.B. (ed.) The Flavonoids, Advances in Research Since 1980. Chapman and Hall Ltd., London, pp. 21–62 (1988).Google Scholar
  54. 54.
    Stafford, H.A.; Lester, H.H. Flavan-3-o1 biosynthesis: the conversion of (+)-dihydroquercetin and flavan-3,4-cis-diol (leucocyanidin) to (+)-catechin by reductase extracted from cell suspension cultures of Douglas-fir. Plant Physiol. 76: 184 (1984).PubMedCrossRefGoogle Scholar
  55. 55.
    Nonaka, G.; Goto, Y.; Kinjo, J.; Nohara, T.; Nishioka, I. Tannins and related compounds. LII. Studies on the constituents of leaves of Thujopsis dolabrata Sieb. et Zucc. Chem. Pharm. Bull. 35: 1105 (1987).CrossRefGoogle Scholar
  56. 56.
    Lundgren, L.N.; Theander, O. Cis-and trans-dihydroquercetin glucosides from needles of Pinus sylvestris. Phytochemistry 27: 829 (1988).Google Scholar
  57. 57.
    Porter, L.J. Condensed tannins. In:Rowe, J.W. (ed.) Natural Products Extraneous to the Lignocellulosic Cell Wall of Woody Plants. Springer-Verlag, New York, (in press).Google Scholar
  58. 58.
    Roux, D.G.; Ferreira, D. a-Hydroxychalcones as intermediates in flavonoid biogenesis: the significance of recent chemical analogies. Phytochemistry 13: 2039 (1974).CrossRefGoogle Scholar
  59. 59.
    Roux, D.G.; Ferreira, D. Rationalization of divergent condensation sequences in flavanoid oligomerization. Ann. Proc. Phytochem. Soc. Ear. 25: 221 (1985).Google Scholar
  60. 60.
    Gupta, R.K.; Haslam, E. Plant proanthocyanidins. Part 7. Prodelphinidins from Pinus sylvestris. J. Chem. Soc. Perkin Trans. 1: 1148 (1981).CrossRefGoogle Scholar
  61. 61.
    Delcour, J.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 9. The condensation sequence of leucocyanidin with (+)-catechin and with the resultant procyanidins. J. Chem. Soc. Perkin Trans. 1: 1711 (1983).CrossRefGoogle Scholar
  62. 62.
    Hemingway, R.W.; Laks, P.E. Condensed tannins: a proposed route to 2R, 3R-(2,3-cis)proanthocyanidins. J. Chem. Soc. Chem. Commun.: 746 (1985).Google Scholar
  63. 63.
    Attwood, M.R.; Brown, B.R.; Lisseter, S.G. Spectral evidence for the formation of quinone methide intermediates from 5- and 7- hydroxyflavonoids. J. Chem. Soc. Chem. Commun.: 177 (1984).Google Scholar
  64. 64.
    Stafford, H.A. Proanthocyanidins and the lignin connection. Phytochemistry 27: 1 (1988).CrossRefGoogle Scholar
  65. 65.
    Hemingway, R.W. Biflavonoids and proanthocyanidins. In:Rowe, J.W. (ed.) Natural Products Extraneous to the Lignocellulosic Cell Wall of Woody Plants. Springer-Verlag, New York (in press).Google Scholar
  66. 66.
    Porter, L.J.; Foo, L.Y.; Furneaux, R.H. Isolation of three naturally occurring 0-ß-glucopyranosides of proanthocyanidin polymers. Phytochemistry 24: 567 (1985).CrossRefGoogle Scholar
  67. 67.
    Foo, L.Y.; Karchesy, J.J. Procyanidin dimers and trimers from Douglas-fir inner bark. Phytochemistry (in press).Google Scholar
  68. 68.
    Foo, L.Y.; Karchesy, J.J. Procyanidin polymers of Douglas-fir bark: structure from degration with phlomglucinol. Phytochemistry (submitted).Google Scholar
  69. 69.
    Hrazdina, G; Wagner, G.J. Compartmentation of plant phenolic compounds: sites of synthesis and accumulation. Ann. Proc. Phytochem. Europe 25: 119 (1985).Google Scholar
  70. 70.
    Ureta, T. The role of isozymes in metabolism: a model of metabolic pathways as the basis for the biological role of isozymes. Current Topics in Enzyme Regulation 13: 233 (1978).Google Scholar
  71. 71.
    Friedrich, P. Supramolecular Enzyme Organization. Pergamon Press, Oxford (1984).Google Scholar
  72. 72.
    Welch, G.R.; Keleti, T. Is cell metabolism controlled by a `molecular democracy’ or by a `supramolecular socialism’? TIBS 12: 216 (1987).Google Scholar
  73. 73.
    Srivasta, D.K.; Bernhard, S.A. Metabolite transfer via enzyme-enzyme complexes. Science 234: 1081 (1986).CrossRefGoogle Scholar
  74. 74.
    Halbrock, K. Flavonoids. In: The Biochemistry of Plants. 7:425 (1981).Google Scholar
  75. 75.
    Santamour, F.S. Anthocyanidins of conelets in the Pinaceae. Forest Science 12: 429 (1966).Google Scholar
  76. 76.
    Ching, K.K.; Aft, H.; Highley, T. Color variation in strobili of Douglas-fir. In: Proc. Western Forest Genetics Assoc. Olympia, WA, December 6–7. 37. (1965).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Helen A. Stafford
    • 1
  1. 1.Biology DepartmentReed CollegePortlandUSA

Personalised recommendations