Significant evidence exists that dietary tannin can reduce growth and fecundity of some insect species. However, few studies have identified clear physiological or toxicological impacts of tannins on insect herbivores; some have suggested that tannins are positive nutritional factors. Insect species that feed on tanniniferous plant tissues often appear able to tolerate dietary tannins and may even be stimulated to feed by their presence. Alkaline midgut pH, surfactants, and the peritrophic membrane all may help these species tolerate moderate tannin concentrations in the diet. Reduced growth of adapted species at high tannin concentration may represent metabolic costs, not direct tannin effects. New evidence suggests an important impact of dietary tannin on microbial enemies of insects. The study of tannin-insect interactions has been hampered by poor communication between chemists and biologists.


Insect Species Gypsy Moth Tannin Concentration Peritrophic Membrane Pteridium Aquilinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zucker, W.V. Tannins: does structure determine function? An ecological perspective. Amer. Nat. 121: 335 (1983).CrossRefGoogle Scholar
  2. 2.
    Bate-Smith, E.D.; Swain, T. Flavonoid compounds. In: Florkin, M.; Mason, H.C. (eds.) Comparative Biochemistry, Vol. III, Academic Press, New York, (1962).Google Scholar
  3. 3.
    Feeny, P. Effect of oak leaf tannins on larval growth of the winter moth Operopthera bru-mata. J. Insect Physiol. 14: 805 (1968).CrossRefGoogle Scholar
  4. 4.
    Feeny, P. Seasonal changes in the oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565 (1970).CrossRefGoogle Scholar
  5. 5.
    Feeny, P. Inhibitory effect of oak leaf tannins on the hydrolysis of proteins by trypsin. Phytochemistry 8: 2119 (1969).CrossRefGoogle Scholar
  6. 6.
    Bate-Smith, E.C. Haemanalysis of tannins: the concept of relative astringency. Phytochemistry 12: 907 (1973).CrossRefGoogle Scholar
  7. 7.
    Chang, S.I.; Fuller, H.L. Effect of tannin content of grain sorghums on their feeding value for growing chicks. Poultry Sci. 43: 39 (1964).Google Scholar
  8. 8.
    Potter, D.K.; Fuller, H.L. Metabolic fate of dietary tannins in chickens. J. Nutrition 96: 187 (1968).Google Scholar
  9. 9.
    Butler, L.G.; Rogler, J.C.; Mehansho, H.; Carlson, D.M. Dietary effects of tannins. In: Cody, V.; Harborne, J.B.; Middleton, E. (eds.) Biochemical Pharamocological, and Structure-Activity Relationships, A. R. Liss Inc., New York, (1986).Google Scholar
  10. 10.
    Singleton, V.L.; Kratzer, F.H. Plant phenolics. In: “Toxicants Occurring Naturally in Foods”. Nat. Acad. Sci., Washington, DC (1973).Google Scholar
  11. 11.
    Rossiter, M.C.; Schultz, J.C.; Baldwin, I.T. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology 69: 267 (1988).CrossRefGoogle Scholar
  12. 12.
    Rossiter, M.C.; Schultz, J.C. (unpublished results).Google Scholar
  13. 13.
    Klocke, J.A.; Chan, B.G. Effects of cotton condensed tannin on feeding and digestion in the cotton pest. Heliothis zea, J. Insect Physiol. 28: 911 (1982).CrossRefGoogle Scholar
  14. 14.
    Sharma, H.C.; Agarwal, R.A. Effect of some antibiotic compounds in Gossypiumon the post-embryonic development of spotted bollworm (Earias vittella). Ent. Exp. and Appl. 31: 255 (1982).CrossRefGoogle Scholar
  15. 15.
    Hedin, P.A.; Jenkins, J.N.; Collura, D.H.; White, W.H.; Parrott, W.L. Multiple factors in cotton contributing to resistance to the tobacco budworm. Heliothis virescens F. A CS Symp 208: 347 (1983).Google Scholar
  16. 16.
    Bernays, E.A. Plant tannins and insect herbivores: an appraisal. Ecol. Entomol. 6: 353 (1981).CrossRefGoogle Scholar
  17. 17.
    Bernays, E.A. Tannins: an alternative viewpoint. Ent. Exp. and Appl. 24: 44 (1978).CrossRefGoogle Scholar
  18. 18.
    Waldbauer, G.P. The consumption and utilization of food by insects. Adv. Insect Physiol. 5: 229 (1968).CrossRefGoogle Scholar
  19. 19.
    Scriber, J.M.; Slansky, F. The nutritional ecology of immature insects. Ann. Rev. Entomol. 26: 183 (1981).CrossRefGoogle Scholar
  20. 20.
    Bernays, E.A.; Chamberlain, D.J.; Leather, E.M. Tolerance of acridids to ingested condensed tannin. J. Chem. Ecol. 7: 247 (1981).CrossRefGoogle Scholar
  21. 21.
    Berenbaum, M.R. Effects of tannins on growth and digestion in two species of papilionoids. Ent. Exp. and Appl. 34: 245 (1983).CrossRefGoogle Scholar
  22. 22.
    Manuwoto, S.; Scriber, J.M.; Hsia, M.T.; Sunarjo, P. Antibiosis/antixenosis in tulip tree and quaking aspen leaves against the polyphagous southern armyworm. Spodoptera eridania, Oecologia. 67: 1 (1985).CrossRefGoogle Scholar
  23. 23.
    Hagerman, A.E.; Butler, L.G. The specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 256: 4494 (1981).PubMedGoogle Scholar
  24. 24.
    Steinly, B.A.; Berenbaum, M. Histopathological effects of tannins on the midgut epithelium of Papilio polyxenes and Papilio glaucus. Ent. Exp. and Appl. 39: 3 (1985).CrossRefGoogle Scholar
  25. 25.
    Bernays, E.A.; Chamberlain, D.J.; McCarthy, P. The differential effects of ingested tannic acid on different species of Acridoidea. Ent. Exp. and Appl. 28: 158 (1980).CrossRefGoogle Scholar
  26. 26.
    Brandt, C.R.; Adang, M.J.; Spence, K.D. The periotrophic membrane: ultrastructural analysis and function as a mechanical barrier to microbial infection in Orgyia pseudotsugata. J. Inv. Path. 32: 12 (1978).CrossRefGoogle Scholar
  27. 27.
    Cadman, C.H. Inhibition of plant virus infection by tannins. In: Pridham, J.D. (ed.) Phenolics in Plants in Health and Disease, Pergamon Press, New York (1960).Google Scholar
  28. 28.
    Mink, G.I.; Huisman, O.; Saksena, K.N. Oxidative inactivation of tulare apple mosaic virus. Virology 29: 437 (1966).PubMedCrossRefGoogle Scholar
  29. 29.
    Mole, S.; Waterman, P.G. Tannins as antifeedants to mammalian herbivores - still an open question? ACS Symp. 250: 572 (1987).CrossRefGoogle Scholar
  30. 30.
    Tipton, K.W.; Floyd, E.H.; Marshall, J.C.; McDevitt, J.B. Resistance of certain grain sorghum hybrids to bird damage in Louisiana. Agron. J. 62: 211 (1970).CrossRefGoogle Scholar
  31. 31.
    Bettolo, G.B.M.; Marta, M.; Pomponi, M.; Bernays, E.A. Flavan oxygenation pattern and insect feeding deterrence. Biochem. Syst. Ecol. 14: 249 (1986).CrossRefGoogle Scholar
  32. 32.
    Barbosa, P.; Krischik, V.A. Influence of alkaloids on feeding preference of eastern deciduous trees by the gypsy moth. Lymantria dispar L. Amer. Nat. 130: 53 (1987).CrossRefGoogle Scholar
  33. 33.
    van Gornitz, K. Frassauslosende stoffe fur polyphagen holzgewachsen fressenden raupen. Verhandl. Deutchen Gesell. fur Ange. Entomol. 6: 38 (1954).Google Scholar
  34. 34.
    Grevillius, A.Y. Zur Kenntnis der Biologie des goldafters (Euproctis chrysorrhoea L.) and der durch denselben verusachten Beshadigungen. Bolan. Zentral. 18: 222 (1905).Google Scholar
  35. 35.
    Glyphis, J.P. “Herbivory and Tannin Polyphenols in Mediterranean Ecosystems”, PhD. Dissertation, Faculty of Science, University of Cape Town, South Africa, (1985).Google Scholar
  36. 36.
    Schultz, J.C. Impact of invariable plant chemical defenses on insect susceptibility to parasites predators, and diseases. ACS Symp. 208: 267 (1983).Google Scholar
  37. 37.
    Faeth, S.H.; Bultman. Interacting effects of increased tannin levels on leaf-mining insects. Ent. Exp. and Appl. 40: 297 (1986).CrossRefGoogle Scholar
  38. 38.
    Perrins, C.M. Possible effects of qualitative changes in the insect diet of avian predators. Ibis 118: 580 (1976).CrossRefGoogle Scholar
  39. 39.
    Taper, M.L.; Zimmerman, E.M.; Case, T.J. Sources of mortality for a cynipid gall-wasp (Dryocosmus dubiosus (Hymentoptera: Cynipidae)): The importance of the tannin/fungus interaction. Oecologia 68: 437 (1986).CrossRefGoogle Scholar
  40. 40.
    Luthy, P.; Hofmann, C.; Jaquet, F. Inactivation of delta-endotoxin of Bacillus thuringiensis by tannin. FEMS Microbiol. Letters 28: 31 (1985).CrossRefGoogle Scholar
  41. 41.
    Keating, S.T.; Yendol, W.G. Influence of selected host plants on gypsy moth (Ledidoptera: Lymantriidae) larval mortality caused by a baculovirus. Environ. Entomol. 16: 459 (1987).Google Scholar
  42. 42.
    Keating, S.T.; Yendol, W.G.; Schultz, J.C. Relationship between susceptibility of gypsy moth larvae (Lepidoptera: Lymantriidae) to baculovirus and host plant foliage constituents. Environ. Entomol. (in press).Google Scholar
  43. 43.
    Felton, G.W.; Duffey, S.S.; Vail, P.V.; Kaya, H.K.; Manning, J. Interaction of nuclear polyhedrosis virus with catechols: potential incompatibility for host-plant resistance against noctuid larvae. J. Chem. Ecol. 13: 947 (1987).CrossRefGoogle Scholar
  44. 44.
    Bernays, E.A.; Woodhead, S. Plant phenols utilized as nutrients by a phytophagous insect. Science 216: 201 (1982).PubMedCrossRefGoogle Scholar
  45. 45.
    Ehrlich, P.R.; Raven, P.H. Butterflies and plants: a study in coevolution. Evolution 18: 586 (1964).CrossRefGoogle Scholar
  46. 46.
    Schultz, J.C.; Lechowicz. Host plant, larval age and feeding behavior influence midgut pH in the gypsy moth (Lymantria dispar L.), Oecologia 71: 133 (1986).CrossRefGoogle Scholar
  47. 47.
    Dow, J.A.T. Insect midgut function. Adv. Insect Physiol. 19: 187 (1986).CrossRefGoogle Scholar
  48. 48.
    Schultz, J.C.; Baldwin, I.T.; Nothnagle, P.J. Hemoglobin as a binding substrate in quantitative analysis of plant tannins. J. Agric. Food Chem. 29: 823 (1981).CrossRefGoogle Scholar
  49. 49.
    Lawson, D.L.; Merritt, R.W.; Martin, M.M.; Martin, J.S.; and Kukor, J.J. The nutritional ecology of larvae of Alsophila pometaria and Anisota senatoria feeding on early-and late-season oak foliage. Ent. Exp. and Appl. 35: 105 (1984).Google Scholar
  50. 50.
    Berenbaum, M. Adaptive significance of midgut pH in larval Lepidoptera. Amer. Nat. 115: 138 (1980).CrossRefGoogle Scholar
  51. 51.
    Martin, M.M.; Rockholm, D.C.; Martin, J.S. Effects of surfactants, pH, and certain cations on preciptation of proteins by tannins. J. Chem. Ecol. 11: 485 (1985).CrossRefGoogle Scholar
  52. 52.
    Gould, S.J.; Lewontin, R.C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B. 205: 581 (1979).PubMedCrossRefGoogle Scholar
  53. 53.
    Martin, M.M.; Martin, J.S. Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts. Oecologia 61: 342 (1984).CrossRefGoogle Scholar
  54. 54.
    Martin, J.S.; Martin, M.M.; Bernays, E.A. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implications for theories of plant defense. J. Chem. Ecol. 13: 605 (1987).CrossRefGoogle Scholar
  55. 55.
    Turunen, S. Digestion and absorption of lipids in insects. Comp. Biochem. Physiol. 63A: 455 (1979).CrossRefGoogle Scholar
  56. 56.
    Asquith, T.; Mehansho, H.; Rogler, J.; Butler, L.G.; Carlson, D.M. Induction of proline-ridi protein biosynthesis in salivary glands by tannins. Fed. Proc. 44: 1097 (1985).Google Scholar
  57. 57.
    Schultz, J.C.; Keating, S.T. (unpublished results).Google Scholar
  58. 58.
    Swain, T.; Goldstein, J.L. The quantitative analysis of phenolic compounds. In: Pridham, J.B. (ed.) Methods in Polyphenol Chemistry, Pergamon Press, New York (1964).Google Scholar
  59. 59.
    Hagerman, A.E.; Butler, L.G. Choosing appropriate methods and standards for assaying tannin. J. Chem. Ecol. (in press).Google Scholar
  60. 60.
    Martin, J.S.; Martin, M.M. Tannin assays in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54: 205 (1982).CrossRefGoogle Scholar
  61. 61.
    Hagerman, A.E. Extraction of tannin from fresh and preserved leaves. J. Chem. Ecol. 14: 453 (1988).CrossRefGoogle Scholar
  62. 62.
    Schultz, J.C. (unpublished results).Google Scholar
  63. 63.
    Baldwin, I.T.; Schultz, J.C. Rapid damage-induced changes in tree leaf chemistry and evidence of communication between plants. Science 221: 277 (1984).CrossRefGoogle Scholar
  64. 64.
    Wint, G.R.W. The effect of foliar nutrient upon the growth and feeding of lepidopteran larva. In: Lee, J.A.; McNeill, S.; Rorison, I.H. (eds.) Nitrogen as an Ecological Factor, Blackwell, London (1983).Google Scholar
  65. 65.
    Zummo, G.R.; Benedict, J.H.; Segers, J.C. No-choice study of plant-insect interactions for Heliothis zea (Boddie) (Lepidoptera: Noctuidae) on selected cottons. Environ. Entomol. 12: 1833 (1983).Google Scholar
  66. 66.
    Elliger, C.A.; Chan, B.G.; Waiss, Jr., A.C. Relative toxicity of minor cotton terpenoids compared to gossypol. J. Econ. Entomol. 71: 161 (1978).Google Scholar
  67. 67.
    Boughdad, A.; Gillon, Y.; Gagnepain, C. Influence des tanins condenses du tegument de feves (Vicia faba) sur le developpement larvaire de Callosobruchus maculates. Ent. Exp. and Appl. 42: 125 (1986).CrossRefGoogle Scholar
  68. 68.
    Bryant, J.P.; Clausen, T.B.; Reichardt, P.B.; McCarthy, M.C.; Werner, R.A. Effect of nitogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Popalus tremuloides Michx.) leaves for the large aspen tortrix (Choristoneura conflictana (Walker)), Oecologia 73: 513 (1987).CrossRefGoogle Scholar
  69. 69.
    Cooper-Driver, G.; Finch, S.; Swain, T.; Bernays, E.A. Seasonal variation in secondary plant compounds in relation to the palatability of Pteridium aquilinum. Biochem. Syst. Ecol. 5: 177 (1977).CrossRefGoogle Scholar
  70. 70.
    Klocke, J.A.; Van Wagenen, B.; Balandrin, M.F. The ellagitannin geraniin and its hydrolysis products isolated as insect growth inhibitors from semi-arid land plants. Phytochemistry 25: 85 (1986).CrossRefGoogle Scholar
  71. 71.
    Bergelson, J.; Fowler, S.; Hartley, S. The effects of foliage damage on casebearing moth larvae. Coleophora serratella, feeding on birch. Ecol. Entomol. 11: 241 (1986).CrossRefGoogle Scholar
  72. 72.
    Haukioja, E.; Niemela, P.; Siren, S. Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover after defoliation in the mountain birch Betula pubescens ssp. tortuosa, Oecologia 65: 214 (1985).CrossRefGoogle Scholar
  73. 73.
    Kawanishi, K.; Raffauf, R.F. Caryocar microcarpum: an ant repellent and fish poison of the Northwest Amazon. J. Nat. Prod. 49: 1167 (1986).CrossRefGoogle Scholar
  74. 74.
    Nichols-Orians, C.; Schultz, J.C. (unpublished results).Google Scholar
  75. 75.
    Seaman, F.C. The effects of tannin acid and other phenolics on the growth of the fungus cultivated by the leafcutting ant. Myrmicocrypta buenzlii. Biochem. Syst. Ecol. 12: 155 (1984).CrossRefGoogle Scholar
  76. 76.
    Leszczynski, B.; Warchol, J.; Niraz, S. The influence of phenolic compounds on the preference of winter wheat cultivars by cereal aphids. Insect Sci. Applic. 6: 157 (1985).Google Scholar
  77. 77.
    Jones, C.G.; Firn, R.D. Some allelochemicals of Pteridium aquilinum and their involvement in resistance to Pieris brassicae. Biochem. Syst. Ecol. 8: 187 (1979).CrossRefGoogle Scholar
  78. 78.
    Bennett, S.E. Tannic acid as a repellent and toxicant to alfalfa weevil larvzae. J. Econ. Entomol. 58: 372 (1965).Google Scholar
  79. 79.
    Schoonhoven, L.M.; Dersken-Koppers, I. Effects of secondary plant substances on drinking behaviour in some Heteroptera. Ent. Exp. and Appl. 16: 141 (1973).CrossRefGoogle Scholar
  80. 80.
    Todd, G.W.; Getdium, A.; Cress, D.C. Resistance in barley to greenbug. Schizaphis graminum L. Toxicity of the phenolic and flavonoid compounds and related substances. Ann. Entomol. Soc. Am. 64: 718 (1971).Google Scholar
  81. 81.
    Puttick, G.M. Utilization of evergreen and deciduous oaks by the California oak moth. Phryganidia californica, Oecologia 68: 589 (1986).CrossRefGoogle Scholar
  82. 82.
    Chan, B.G.; Waiss, A.C.; Lukefahr, M. Condensed tannin, an antibiotic chemical from Gossypium hirsutum. J. Insect Physiol. 24: 113 (1978).CrossRefGoogle Scholar
  83. 83.
    Smiley, J.T.; Wisdom, C.S. Determinants of growth rate on chemically heterogeneous host plants by specialist insects. Biochem. Syst. Ecol. 13: 305 (1985).CrossRefGoogle Scholar
  84. 84.
    Ottosson, J.H.; Anderson, J.M. Seasonal and interspecific variation in the biochemical composition of some British fern species and their effects on Spodoptera littoralis larvae. Biol. J. Linn. Soc. 19: 305 (1983).CrossRefGoogle Scholar
  85. 85.
    Fox, L.R.; Macauley, B.J. Insect grazing on Eucalyptus in response to variation in leaf tannins and nitrogen. Oecologia 29: 145 (1977).Google Scholar
  86. 86.
    Yokoyama, V.Y.; Mackey, B.E. Protein and tannin in upper, middle, and lower cotton plant strata and cigarette beetle (Coleoptera:Anobüdae) growth on the foliage. J. Econ. Entomol. 80: 843 (1987).Google Scholar
  87. 87.
    Leather, S.R.; Watt, A.D.; Forrest, G.I. Insect-induced chemical changes in young lodgepole pine (Pinus contorts): the effect of previous defoliation on oviposition, growth and survival of the pine beauty moth. Panolis ftammea. Ecol. Entomol. 12: 275 (1987).CrossRefGoogle Scholar
  88. 88.
    Mattson, W.J.; Slocum, S.S.; Koller, C.N. Spruce budworm (Choristoneura fumiferana) performance in relation to foliar chemistry of its host plants. U.S. For. Serv. Tech. Rpt. 85: 55 (1983).Google Scholar
  89. 89.
    Wagner, M.R.; Blake, E.A. Western spruce budworm consumption - effects of host species and foliage chemistry. U.S. For. Serv. Tech. Rpt. 85: 49 (1983).Google Scholar
  90. 90.
    Cates, R.G.; Redak, R.A.; Henderson, C.B. Patterns in defensive natural product chemistry: interactions. A CS Symp. 208: 3 (1983).Google Scholar
  91. 91.
    Coley, P.D. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol. Monogr. 53: 209 (1983).CrossRefGoogle Scholar
  92. 92.
    Schmitt, M.D.C.; Czapowskyj, M.M.; Allen, D.C.; White, E.H.; Montgomery, M.E. Spruce budworm fecundity and foliar chemistry: influence of site. U.S. For. Serv. Tech. Rpt. 85: 97 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jack C. Schultz
    • 1
  1. 1.Pesticide Research Lab and Gypsy Moth Research CenterPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations