Advertisement

Effects of Condensed Tannin on Animal Nutrition

  • Larry G. Butler

Abstract

Addition of condensed tannins to diets of experimental animals usually results in diminished weight gains and lowered efficiency of feed utilization, as well as increased fecal nitrogen. These effects have been interpreted in terms of inhibition by tannin of the digestion of dietary protein. Recent studies suggest that inhibition of digestion is much less significant than inhibition of the utilization of digested and absorbed nutrients. Some component(s) of condensed tannin appear to be absorbed from the digestive tract and produce systemic effects. Herbivorous mammals partially protect themselves against dietary tannin by producing specific proline-rich salivary proteins that strongly and selectively bind the tannins, thus sparing dietary proteins. Without these defensive proteins, which may be the source of the increased fecal nitrogen, the antinutritional effects of tannin would be much more severe.

Keywords

Dietary Protein Condensed Tannin Tannin Content Hydrolyzable Tannin Nutritional Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beart, J.E.; Lilley, T.H.; Haslam, E. Plant polyphenols-secondary metabolism and chemical defense: Some observations. Phytochemistry 24: 33 (1985).CrossRefGoogle Scholar
  2. 2.
    Mole, S.; Waterman, P.G. Tannins as antifeedants to mammalian herbivores-still an open question? In: Waller, G.R. (ed.) Allelochemicals in Agriculture, Forestry, and Ecology. Am. Chem. Soc. Symp. Series, Washington, DC. (1987).Google Scholar
  3. 3.
    Deshpande, S.S.; Sathe, S.K.; Salunkhe, D.K. Chemistry and safety of plant polyphenols. In: Freidman, M. (ed.) Nutritional and Toxicological Aspects of Food Safety. Plenum Press, New York (1984).Google Scholar
  4. 4.
    Mehansho, H.; Butler, L.G.; Carlson, D.M. Dietary tannins and salivary proline-rich proteins: Interactions, induction, and defense mechanisms. Ann. Rev. Nutr. 7: 423 (1987).CrossRefGoogle Scholar
  5. 5.
    Salunkhe, D.K.; Jadhav, S.J.; Kadam, S.S.; Chavan, J.K. Chemical, biochemical and biological significance of polyphenols in cereals and legumes. CRC Crit. Rev. Food Sci. Nutr. 17: 277 (1982).Google Scholar
  6. 6.
    Reddy, N.R.; Pierson, M.D.; Sathe, S.K.; Salunkhe, D.K. Dry bean tannins: A review of nutritional implications. J. Am. Chem. Soc. 62: 541 (1985).CrossRefGoogle Scholar
  7. 7.
    McMillian, W.W.; Wiseman, B.R.; Burns, R.E.; Harris, H.B.; Greene, L. Bird resistance in diverse germplasm of sorghum. Agron. J. 64: 821 (1972).CrossRefGoogle Scholar
  8. 8.
    Harris, H.B.; Burns, R.E. Relationship between tannin content of sorghum grain and pre-harvest seed molding. Agron. J. 65: 957 (1973).CrossRefGoogle Scholar
  9. 9.
    Wranghan, R.W.; Waterman, P.G. Feeding behaviour of vervet monkeys on Acacia tortilis and Acacia ranthophloea: With special reference to reproductive strategies and tannin production. J. Animal Ecol. 50: 715 (1981).CrossRefGoogle Scholar
  10. 10.
    Cooper, S.M.; Owen-Smith, N. Condensed tannins deter feeding by browsing ruminants in a South African savanna. Oecologia 67: 142 (1985).CrossRefGoogle Scholar
  11. 11.
    Smallwood, P.D.; Peters, W.D. Grey squirrel food preferences: The effects of tannin and fat concentration. Ecology 67: 168 (1986).CrossRefGoogle Scholar
  12. 12.
    Martin, R.W. Overbrnwsing and decline of a population of the koala, Phascolactor cinereus, in Victoria. I. Food Preference and Food Tree Defoliation. Aust. J. Wildlife Res. 12:355 (1985).Google Scholar
  13. 13.
    Atsatt, P.R.; Ingram, T. Adaptation to oak and other fibrous phenolic-rich foliage by a small mammal, Neotoma fuscipes. Oecologia 60: 135 (1983).CrossRefGoogle Scholar
  14. 14.
    Morton, J.F. Further associations of plant tannins and human cancer. Quarterly J. Crude Drug Res. 12: 1829 (1972).Google Scholar
  15. 15.
    Pierpoint, W.S. Phenolics in food and feedstuffs: The pleasures and perils of vegetarianism. In: van Sumere, C.F.; Lea, P.J. (eds.) Biochemistry of Plant Phenolics. Oxford Academic Press, London (1985).Google Scholar
  16. 16.
    Stagg, G.V.; Millin, D.J. The nutritional and therapeutic value of tea-a review. J. Sci. Food Agric. 26: 1439 (1975).CrossRefGoogle Scholar
  17. 17.
    Featherston, W.R.; Rogler, J.C. Influence of tannins on the utilization of sorghum grain by rats and chicks. Nutr. Rep. Intl. 11: 491 (1975).Google Scholar
  18. 18.
    Sell, D.R.; Reed, W.M.; Chrisman, C.L.; Rogler, J.C. Mucin excretion and morphology of the digestive tract as influenced by sorghum tannins. Nutr. Rep. Intl. 31: 1369 (1985).Google Scholar
  19. 19.
    Lindroth, R.L.; Batzli, G.O.; Avildsen, S.I. Lespedeza phenolics and penstemon alkaloids: Effects on digestion efficiencies and growth of voles. J. Chem. Ecol. 12: 713 (1986).CrossRefGoogle Scholar
  20. 20.
    Joslyn, M.A.; Glick, Z. Comparative effects of gallotannic acid and related phenolics on the growth of rats. J. Nutr. 98: 119 (1969).PubMedGoogle Scholar
  21. 21.
    Tamir, M.; Alumot, E. Carob tannins-growth depression and levels of insoluble nitrogen in the digestive tract of rats. J. Nutr. 100: 573 (1970).PubMedGoogle Scholar
  22. 22.
    Jambunathan, R.; Mertz, E.T. Relationship between tannin levels, rat growth, and distribution of protein in sorghum. J. Agric. Food Chem. 21: 692 (1973).PubMedCrossRefGoogle Scholar
  23. 23.
    Schaffert, R.E.; Oswalt, D.L.; Axtell, J.D. Effect of supplemental protein on the nutritive value of high and low tannin sorghum bicolor (L.) Moench grain for the growing rat. J. Animal Sci. 39: 500 (1974).Google Scholar
  24. 24.
    Mitaru, B.N.; Reichert, R.D.; Blair, R. The binding of dietary protein by sorghum tannins in the digestive tract of pigs. J. Nutr. 114: 1787 (1984).Google Scholar
  25. 25.
    Myer, R.O.; Gorbet, D.W. Waxy and normal grain sorghums with varying tannin contents in diets for young pigs. Animal Feed Sci. Tech. 12: 179 (1985).CrossRefGoogle Scholar
  26. 26.
    Kumar, R.; Singh, M. Tannins: Their adverse role in ruminant nutrition. J. Agric. Food Chem. 32: 447 (1984).CrossRefGoogle Scholar
  27. 27.
    Barry, T.N.; Manley, T.R. Interrelationships between the concentrations of total condensed tannin, free condensed tannin and lignin in lotus sp. and their possible consequences in ruminant nutrition. J. Sci. Food Agric. 37: 248 (1986).CrossRefGoogle Scholar
  28. 28.
    Fox, D.G.; Klosterman, EW.; Newland, H.W.; Johnson, R.R. Net energy of corn and bird resistant grain sorghum rations for steers when fed as grain or silage. J. Animal Sci. 30: 303 (1970).Google Scholar
  29. 29.
    Maxson, W.E.; Shirley, R.L.; Bertrand, J.E.; Palmer, A.Z. Energy values of corn, bird-resistant and non-bird-resistant sorghum grain in rations fed to steers. J. Animal Sci. 37: 1451 (1973).Google Scholar
  30. 30.
    Reid, C.S.W.; Ulyatt, M.J.; Wilson, J.M. Plant tannins, bloat, and nutritive values. Proc. New Zealand Soc. Animal Prod. 34: 82 (1974).Google Scholar
  31. 31.
    Dreidger, A.; Hatfield, E.E. Influence of tannins on the nutritive value of soybean meal for ruminant. J. Animal Sci. 34: 465 (1972).Google Scholar
  32. 32.
    Waghorn, G.C.; Ulyatt, M.J.; John, A. Fisher, M.T. The effect of condensed tannins on the site of digestion of amino acids and other nutrients in sheep fed on Lotus corniculatus L. British J. Nutr. 57: 115 (1987).CrossRefGoogle Scholar
  33. 33.
    Chang, S.I.; Fuller, H.L. Effect of tannin content of grain sorghums on their feeding value for growing chicks. Poultry Sci. 43: 30 (1964).Google Scholar
  34. 34.
    Vohra, P.; Kratzer, F.H.; Joslyn, M.A. The growth depressing and toxic effects of tannins to chicks. Poultry Sci. 45: 135 (1966).Google Scholar
  35. 35.
    Rostagno, H.S.; Featherston, W.R.; Rogler, J.C. Studies on the nutritional value of sorghum grains with varying tannin contents for chicks. I. Growth Studies Poultry Sci. 52: 765 (1973).Google Scholar
  36. 36.
    Kratzer, F.H.; Singleton, V.L.; Kadirvel, R.; Rayudu, G.V. Characterization and growth-depressing activity for chickens of several natural phenolic materials. Poultry Sci. 54: 2124 (1975).Google Scholar
  37. 37.
    Marquardt, R.R.; Ward, A.T.; Campbell, L.D.; Cansfield, P.E. Purification, identification and characterization of a growth inhibitor in faba beans (Vicia faba L. var. minor. J. Nutr. 107: 1313 (1977).Google Scholar
  38. 38.
    Blair, R.; Mitaru, B.N. New information on the role of tannins in the utilization of feedstuffs by growing birds. Proc. Florida Nutr. Conf.: 139 (1983).Google Scholar
  39. 39.
    Garwood, V.A.; Rogler, J.C. Response of growth-selected Japanese quail lines to tannin levels in grain sorghum diets with suboptimal protein. Poultry Sci. 66: 1095 (1987).Google Scholar
  40. 40.
    Sell, D.R.; Rogler, J.C. The effects of sorghum tannin and methionine level on the performance of laying hens in two temperature environments. Poultry Sci. 63: 109 (1984).Google Scholar
  41. 41.
    Bernays, E.A. Plant tannins and insect herbivores: an appraisal. Eco log. Entomol. 6: 353 (1981).CrossRefGoogle Scholar
  42. 42.
    Hussein, L.; Abbas, H. Nitrogen balance studies among boys fed combinations of faba beans and wheat differing in polyphenolic contents. Nutr. Rep. Intl. 31: 67 (1985).Google Scholar
  43. 43.
    Strumeyer, D.H.; Malin, M.J. Resistance of extracellular yeast invertase and other glycoproteins to denaturation by tannins. Biochem J. 118 (1970).Google Scholar
  44. 44.
    Zucker, W.V. Tannins: Does structure determine function? An ecological perspective. Amer. Naturalist 121: 335 (1983).CrossRefGoogle Scholar
  45. 45.
    Harborne, J.B. Introduction to Ecological Biochemistry. Academic Press, London. p. 164 (1982).Google Scholar
  46. 46.
    Oh, H.I.; Hoff, J.E. Effect of condensed grape tannins on the in vitro activity of digestive proteases and activation of their zymogens. J. Food Sci. 51: 577 (1986).CrossRefGoogle Scholar
  47. 47.
    Mole, S.; Waterman, P.G. Stimulatory effects of tannin and cholic acid on tryptic hydrolysis of proteins: Ecological implications. J. Chem. Ecol. 11: 1323 (1985).Google Scholar
  48. 48.
    Robbins, C.T.; Mole, S.; Hagerman, A.E.; Hanley, T.A. Role of tannins in defending plants against ruminants: reduction in dry matter digestion? Ecology 68: 1606 (1987).CrossRefGoogle Scholar
  49. 49.
    Martin, J.S.; Martin, M.M.; Bernays, E.A. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implications for theories of plant defense. J. Chem. Ecol. 13: 605 (1987).CrossRefGoogle Scholar
  50. 50.
    Blytt, H.J.; Guscar, T.K.; Butler, L.G. Antinutritional effects and ecological significance of dietary condensed tannins may not be due to binding and inhibiting digestive enzymes.. 1. Chem. Ecol. 14: 1455 (1988).CrossRefGoogle Scholar
  51. 51.
    Rogler, J.C.; Ganduglia, H.R.R.; Elkin, R.G. Effects of nitrogen source and level on the performance of chicks and rats fed low and high tannin sorghum. Nutr. Res. 5: 1143 (1985).CrossRefGoogle Scholar
  52. 52.
    Mehansho, H.; Rogler, J.C., Butler, L.G.; Carlson, D.M. An unusual growth inhibiting effect of tannins on hamsters. Fed. Proc. 44: 1860 (1985).Google Scholar
  53. 53.
    Glick, Z.; Joslyn, M.A. Effect of tannic acid and related compounds on the absorption and utilization of proteins in the rat. J. Nutr. 100: 516 (1970).PubMedGoogle Scholar
  54. 54.
    Eggum, B.O.; Christensen, K.D. Influence of tannins on protein utilization in feedstuffs with special reference to barley. In: Breeding for Seed Protein Improvement Using Nuclear Techniques. International Atomic Energy Agency, Vienna. p. 135 (1972).Google Scholar
  55. 55.
    Mitaru, B.N.; Reichert, R.D.; Blair, R. Protein and amino acid digestibilities for chickens of reconstituted and boiled sorghum grains varying in tannin contents. Poultry Sci. 64: 101 (1985).Google Scholar
  56. 56.
    Armstrong W.D.; Featherston, W.R.; Rogler, J.C. Influence of methionine and other dietary additions on the performance of chicks fed bird resistant sorghum grain diets. Poultry Sci. 52: 1592 (1973).Google Scholar
  57. 57.
    Wang, R.S.; Kies, C.; Sullivan, T. Niacin availability by mice as affected by tannin from sorghum. FASEB J. 2: A442 (1988).Google Scholar
  58. 58.
    Mehansho, H.; Hagerman, A.E.; Clements, S.; Butler, L.G.; Rogler, J.C.; Carlson, D.M. Modulation of proline-rich protein biosynthesis in rat parotid glands by sorghums with high tannin levels. Proc. Natl. Acad. Sci. 80: 3948 (1983).CrossRefGoogle Scholar
  59. 59.
    Sell, D.R.; Rogler, J.C. Effects of sorghum grain tannins and dietary protein on the activity of UDP-glucuronyltransferase. Proc. Soc. Exper. Biol. Med. 174: 93 (1983).Google Scholar
  60. 60.
    Freeland, W.J.; Calcott, P.H.; Anderson, L.R. Tannins and saponin: Interaction in herbivore diets. Biochem. System. Ecology 13: 189 (1985).CrossRefGoogle Scholar
  61. 61.
    Barry, T.N.; Allsop, T.F.; Redekopp, C. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 5. British J. Nutr. 56: 607 (1986).CrossRefGoogle Scholar
  62. 62.
    Lindroth, R.L.; Batzli, G.O. Plant phenolics as chemical defenses: effects of natural phenolics on survival and growth of prairie voles. J. Chem. Ecol. 10: 229 (1984).CrossRefGoogle Scholar
  63. 63.
    Mehanso, H.; Ann, D.K.; Butler, L.G.; Rogler, J.C.; Carlson, D.M. Induction of prolinerich proteins in hamster salivary glands by isopmterenol treatment and an unusual growth inhibition by tannins. J. Biol. Chem. 262: 12344 ( 1987.Google Scholar
  64. 64.
    Martin-Tanguy, J.; Vermorel, M.; Lenoble, M.; Martin, C. Les tanins des graines de sorgho. Importance dans l’utilisation digestive de l’azote ches le rat en croissance. Ann. Biol. Anim. Bioch. Biophys. 16: 879 (1976).CrossRefGoogle Scholar
  65. 65.
    Holzl, J. cited in Wagner, H. Phenolic compounds in plants of pharceutical interest. In: Swain, T.; Harborne, J.; van Sumere, C.F. (eds.) Recent Advances in Phytochemistry and Biochemistry of Plant Phenolics. Plenum Press, New York. p. 589 (1979).Google Scholar
  66. 66.
    Butler, L.G.; Rogler, J.C.; Mehansho, H.; Carlson, D.M. Dietary effects of tannins. In: Cody, V.; Harborne, J.B.; Middleton, E. (eds.) Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity Relationships. Alan R. Liss, New York (1986).Google Scholar
  67. 67.
    Freeland, W.J.; Calcott, P.H.; Geiss, D.P. Allelochemicals, minerals, and herbivore population size. Biochem. System. Ecology 13: 195 (1985).CrossRefGoogle Scholar
  68. 68.
    Robbins, C.T.; Hanley, T.A.; Hagerman, A.E.; Hjeljord, O.; Baker, D.L.; Schwartz, C.C.; Mautz, W.W. Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68: 98 (1987b).CrossRefGoogle Scholar
  69. 69.
    Mehansho, H.; Clements, S.; Sheares, B.T.; Smith, S.; Carlson, D.M. Induction of prolinerich gycoprotein synthesis in mouse salivary glands by isoproterenol and by tannins. J. Biol. Chem. 260: 4418 (1985).PubMedGoogle Scholar
  70. 70.
    Hagerman, A.E.; Butler, L.G. The specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 256: 4494 (1981).PubMedGoogle Scholar
  71. 71.
    Knudsen, K.E.B.; Kirleis, A.W.; Eggum, B.O.; Mundt, L. Carbohydrate composition and nutritional quality for rats of sorghum to prepared from decorticated white and whole grain red flour. J. Nutr. 118: 588 (1988).Google Scholar
  72. 72.
    Subramanian, V.N.; Mehansho, H.; Carlson, D.M. Inhibition of proline-rich protein synthesis and induction of tissue-specific proteins by Beta-1 Adrenergic Blockers. FASEB J. 2: A779 (1988).Google Scholar
  73. 73.
    Mole, S.; Glander, K.E.; Butler, L.G. Studies of proline-rich proteins in the ecological context: techniques and preliminary data. J. Chem. Ecol. In press.Google Scholar
  74. 74.
    Elkin, R.G.; Rogler, J.C.; Featherston, W.R. Influence of sorghum grain tannins on me-thionine utilization in chicks. Poultry Sci. 57: 704 (1978).Google Scholar
  75. 75.
    Nicholson, R.L.; Butler, L.G.; Asquith, T.N. Glycoproteins from Colletotrichum graminicola that bind phenols: implications for survival and virulence of phytopathogenic fungi. Phytopathol. 76: 1315 (1986).CrossRefGoogle Scholar
  76. 76.
    Hill, G.M.; Utley, P.R.; Newton, G.L. Influence of crude dietary protein on peanut skin digestibility and utilization by feedlot steers. J. Animal Sci. 62: 887 (1986).Google Scholar
  77. 77.
    Rayudu, G.V.N.; Kadirvel, R.; Vohra, P.; Kratzer, F.H. Effect of various agents in alleviating the toxicity of tannic acid for chickens. Poultry Sci. 49: 1323 (1970).Google Scholar
  78. 78.
    Ford, J.E.; Hewitt, D. Protein quality in cereals and pulses. 3. Bioassays with rats and chickens on sorghum (Sorghum vulgare Pers.), barley, and field beans (Vicia faba L.). Influence of Polyethylene glycol on digestibility of the protein in high-tannin grain. British J. Nutr. 42: 325 (1979).CrossRefGoogle Scholar
  79. 79.
    Chibber, B.A.K.; Mertz, E.T.; Axtell, J.D. Effects of dehulling on tannin content, protein distribution, and quality of high and low tannin sorghum. J. Agric. Food Chem. 26: 679 (1978).CrossRefGoogle Scholar
  80. 80.
    Whitby, G. Successfully processing sorghum. Appropriate Techn. 12: 11 (1985).Google Scholar
  81. 81.
    Reichert, R.D.; Mwasaru, M.A.; Mukuru, S.Z. Characterization of colored-grain sorghum lines and identification of high-tannin lines with good dehulling characteristics. Cereal Chem. 65: 165 (1988).Google Scholar
  82. 82.
    Bressani, R.; Elias, L.G.; Braham, J.E. Reduction of digestibility of legume proteins by tannin. J. Plant Foods 4: 43 (1982).Google Scholar
  83. 83.
    Glennie, C.W.; Daiber, K.H.; Taylor, J.R.N. Reducing the tannin content in sorghum grain by heat. South African Food Review 9: 51 (1982).Google Scholar
  84. 84.
    Price, M.L.; Butler, L.G.; Featherstone, W.R.; Rogler, J.C. Detoxification of high tannin sorghum grain. Nutr. Rep. Intl. 17: 229 (1978).Google Scholar
  85. 85.
    Price, M.L.; Hagerman, A.E.; Butler, L.G. Tannin in sorghum grain: effect of cooking on chemical assays and on antinutritional properties in rats. Nutr. Rep. Intl. 21: 761 (1980).Google Scholar
  86. 86.
    Eggum, B.O.; Monoway, L.; Knudsen, K.E. Bach; Munck, L.; Axtell, J.D. Nutritional quality of sorghum and sorghum foods from Sudan. J. Cereal Sci. 1: 127 (1983).CrossRefGoogle Scholar
  87. 87.
    Sehene, C.; Guiragossian, V. La fabrication de la biere locale de sorgho au rwanda. Proc. 5th Regional Workshop on Sorghum & Millet Improvement in Eastern Africa, SAFGRAD/ICRISAT, Nairobi. p. 259 (1986).Google Scholar
  88. 88.
    Wah, C.S.; Sharma, K.; Jackson, M.G. Studies of various chemical treatments of sal-seedmeal to remove or inactivate tannins. Indian J. Animal Sci. 47: 8 (1977).Google Scholar
  89. 89.
    Dollahite, J.W.; Housholder, G.T.; Camp, B.J. Effect of calcium hydroxide on the toxicity of post oak (Querces stellata) in calves. J. Amer. Vet. Med. Assoc. 148: 908 (1966).Google Scholar
  90. 90.
    Price, M.L.; Butler, L.G.; Rogler, J.C.; Featherston, W.R. Overcoming the nutritionally harmful effects of tannin in sorghum grain by treatment with inexpensive chemicals. J. Agric. Food Chem. 27: 441 (1979).CrossRefGoogle Scholar
  91. 91.
    Ford, J.E.; Hewitt, D. Protein quality in cereals and pulses. 2. Influence of polyethyleneglycol on the nutritional availability of methionine in sorghum (Sorghum volgare pers.), field beans (Vicia faba L.), and barley. British J. Nutr. 42: 317 (1979).CrossRefGoogle Scholar
  92. 92.
    Reichert, R.D.; Fleming, S.E.; Schwab, D.J. Tannin deactivation and nutritional improvement of sorghum by anaerobic storage of H20-, HCI-, or NaOH-treated grain. J. Agric. Food Chem. 28: 824 (1980).PubMedCrossRefGoogle Scholar
  93. 93.
    Muindi, P.J.; Thomke, S. The nutritive value for rats of high and low-tannin sorghums treated with magadi soda. J. Sci. Food Agric. 32: 139 (1981).PubMedCrossRefGoogle Scholar
  94. 94.
    Butler, L.G. Polyphenols and their effects on sorghum quality. Proc. Intl. Symp. on Sorghum Grain Quality, ICRISAT, Patancheru, India. p. 294 (1982).Google Scholar
  95. 95.
    Chavan, J.K.; Kadam, S.S.; Ghonsikar, C.P.; Salunkhe, D.K. Removal of tannins and improvement of in vitro protein digestibility of sorghum seeds by soaking in alkali. J. Food Sci. 44: 1319 (1979).CrossRefGoogle Scholar
  96. 96.
    Kock, J.L.F.; Groenwald, E.G.; Kruger, G.H.J.; Eloff, J.N.; Lategan, P.M. Extraction of polyphenols and hydrolysis of birdproof sorghum starch. J. Sci. Food Agric. 36: 1140 (1985).CrossRefGoogle Scholar
  97. 97.
    Teeter, R.G.; Sarani, S.; Smith, M.O.; Hibberd, C.A. Detoxification of high tannin sorghum grain. Poultry Sci. 65: 67 (1986).Google Scholar
  98. 98.
    Daiber, K.H.; Taylor, J.R.N. Effects of formaldehyde on protein extraction and quality of high-and low-tannin sorghum. J. Agric. Food Chem. 30: 70 (1982).CrossRefGoogle Scholar
  99. 99.
    Pesis, E.; Ben-Arie, R. Involvement of acetaldehyde and ethanol accumulation during induced deastringency of persimmon fruits. J. Food Sci. 49: 896 (1984).CrossRefGoogle Scholar
  100. 100.
    Bressani, R.; Elias, L.G.; Wolzak, A.; Hagerman, A.E.; Butler, L.G. Tannin in common beans: methods of analysis and effects on protein quality. J. Food Sci. 48: 1000 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Larry G. Butler
    • 1
  1. 1.Department of BiochemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations