Microscopic Studies of Tannin Formation and Distribution in Plant Tissues

  • Linda Chalker-Scott
  • Robert L. Krahmer


The functions and localization of condensed tannins and their catechin precursors, together with the microscopic techniques for observing them, are discussed in this chapter. Unlike previous reviews,1 this chapter does not focus on heartwood formation, but rather on the presence of condensed tannins in living tissues. The occurrence and role of condensed tannins in buds, leaves, roots, seeds, and stems are discussed, as is the historical development of the techniques used to identify and quantitate condensed tannins in vivo.


Phenolic Compound Seed Coat Condensed Tannin Verticillium Wilt Plant Pathol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hillis, W.E. Secondary changes in wood. In: Loewus, F.A.; Runeckles, V.C. (eds.) Recent Advances in Phytochemistry. Plenum Publishing Company, New York; pp. 247–309 (1977).Google Scholar
  2. 2.
    Haslam, E. Proanthocyanidins. In: Harborne, J.B.; Mabry, T.J. (eds.) The Flavonoids: Advances in Research. Chapman and Hall, London; pp. 419–447 (1982).Google Scholar
  3. 3.
    Lowry, B.; Lee, D.; Hebant, C. The origin of land plants: a new look at an old problem. Taxon 29: 183 (1980).CrossRefGoogle Scholar
  4. 4.
    Knox, J.P.; Dodge, A.D. Singlet oxygen and plants. Phytochemistry 24: 889 (1985).CrossRefGoogle Scholar
  5. 5.
    Chalker-Scott, L. Relationships between Endogenous Phenolic Compounds of Rhododendron Tissues and Organs and Cold Hardiness Development. PhD. thesis, Oregon State University, Corvallis, 269 p. (1988).Google Scholar
  6. 6.
    Nierenstein, M. The Natural Organic Tannins. History: Chemistry: Distribution. J. and A. Churchill Ltd., London; 319 p. (1934).Google Scholar
  7. 7.
    Harborne, J.B. Plant phenolics. In: Bell, E.A.; Charlwood, B.V. (eds.) Secondary Plant Products. Springer-Verlag, Berlin; pp. 329–402 (1980).CrossRefGoogle Scholar
  8. 8.
    Hillis, W.E. Leucoanthocyanins as the possible precursors of extractives in woody tissues. Aust. J. Biol. Sci. 9: 263 (1956).Google Scholar
  9. 9.
    Akaranta, O.; Odozi, T.O. Antioxidant properties of red onion skin tannin extract. Agric. Wastes 18: 299 (1986).CrossRefGoogle Scholar
  10. 10.
    Slater, T.F.; Scott, R. The free-radical scavenging action of (+)-cyanidanol-3 in relation to the toxicity of carbon tetrachloride. In: Conn, H.O. (ed.) International Workshop on (+)-Cyanidanol-3 in Diseases of the Liver. The Royal Society of Medicine, International Congress and Symposium Series No. 47; Academic Press, London; pp. 33–39 (1981).Google Scholar
  11. 11.
    Perissoud, D.; Maigram, M.F.; Anderset, G. Morphological and biochemical study of the interaction of (+)-cyanidanol-3 with the plasma membrane and protection against phalloidin and carbon tetrachloride toxicity in rat hepatocytes. In: Conn, H.O. (ed.) International Workshop on (+)-Cyanidanol-3 in Diseases of the Liver. The Royal Society of Medicine, International Congress and Symposium Series No. 47; Academic Press, London; pp. 21–26 (1981).Google Scholar
  12. 12.
    Bate-Smith, E.C.; Lerner, N.H. Leuco-anthocyanins. 2. Systematic distribution of leucoanthocyanins in leaves. Biochem. J. 58: 126 (1954).PubMedGoogle Scholar
  13. 13.
    Reeve, R.M. Histological and histochemical changes in developing and ripening peaches. 1. The catechol tannins. Am. J. Bot. 46: 210 (1959).CrossRefGoogle Scholar
  14. 14.
    Rubin, B.A. Artsikhovskaya, E.W. Biochemistry of pathological darkening of plant tissues. Ann. Rev. Phytopathol. 2: 157 (1964).CrossRefGoogle Scholar
  15. 15.
    Pizzi, A.; Cameron, F.A. Flavonoid tannins - structural wood components for drought-resistance mechanisms of plants. Wood Sci. Technol. 20: 119 (1986).CrossRefGoogle Scholar
  16. 16.
    Ross, W.D.; Corden, M.E. Microscopic and histochemical changes in Douglas-fir bark accompanying fungal invasion. Wood and Fiber 5: 129 (1973).Google Scholar
  17. 17.
    Rickard, J.E.; Gahan, P.B. The development of occlusions in cassava (Manihot esculenta Crantz) root xylem vessels. Ann. Bot. 52: 811 (1983).Google Scholar
  18. 18.
    Cottle, W.; Kolattukudy, P.E. Biosynthesis, deposition, and partial characterization of potato suberin phenolics. Plant Physiol. 69: 393 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    Simonds, A.O.; Johnson, G.; Schaal, L.A. Comparative effects of catechol, some related compounds and other chemicals on suberization of cut potato tubers. Bot. Gaz. 115: 190 (1953).CrossRefGoogle Scholar
  20. 20.
    Hogue, E. Biochemical aspects of stress physiology of plants and some considerations of defense mechanisms in conifers. Eur. J. For. Pathos. 12: 280 (1982).Google Scholar
  21. 21.
    Waterman, P.G.; Ross, J.A.M.; McKey, D.B. Factors affecting levels of some phenolic compounds, digestibility, and nitrogen content of the mature leaves of Barteria fistolosa (Passifloraceae). J. Chem. Ecol. 10: 387 (1984).CrossRefGoogle Scholar
  22. 22.
    Bhatia, I.S.; Uppal, D.S.; Bajaj, K.L. Study of phenolic contents of resistant and susceptible varieties of tomato (Lycopersicon esculentrum) in relation to early blight disease. Indian Phytopathol. 25: 231 (1972).Google Scholar
  23. 23.
    Fry, S.C. Incorporation of [14C]cinnamate into hydrolase-resistant components of the primary cell wall of spinach. Phytochemistry 23: 59 (1984).CrossRefGoogle Scholar
  24. 24.
    Carpita, N.C. Incorporation of proline and aromatic amino acids into cell walls of maize coleoptiles. Plant Physiol. 80: 660 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    Taiz, L. Plant cell expansion: regulation of cell wall mechanical properties. Ann. Rev. Plant Physiol. 35: 585 (1984).CrossRefGoogle Scholar
  26. 26.
    Zucker, W.V. Tannins: Does structure determine function? An ecological perspective. Am. Nat. 121: 335 (1983).CrossRefGoogle Scholar
  27. 27.
    Beardmore, J.; Ride, J.P.; Granger, J.W. Cellular lignification as a factor in the hypersensitive resistance of wheat to stem rust. Physiol. Plant Pathol. 22: 209 (1983).Google Scholar
  28. 28.
    Kolattukudy, P.E. Biopolyester membranes of plants: cutin and suberin. Science 208: 990 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    Cole, R.A. Phenolic acids associated with the resistance of lettuce cultivars to the lettuce root aphid. Ann. Appl. Biol. 105: 129 (1984).CrossRefGoogle Scholar
  30. 30.
    Matsui, S.; Torikata, H. The resistance of chestnut trees (Castanea spp.) to chestnut gall wasps (Dryocosmus kuriphilus Yasumatsu). X. Formation of necroses and histochemical distribution of polyphenolic substances in bud tissues. Engel Gakkai Zasshi 45: 107 (1976).CrossRefGoogle Scholar
  31. 31.
    Blunden, G.; Challen, S.B.; Jaques, B. Accumulation of anthoxanthins and imino-acids in leaf galls of Salix fragilis L. Nature 212: 514 (1966).CrossRefGoogle Scholar
  32. 32.
    Hendry, G. Why do plants have cytochrome P-450? Detoxification versus defence. New Phytol. 102: 239 (1986).CrossRefGoogle Scholar
  33. 33.
    Beart, J.E.; Lilley, T.H.; Haslam, E. Plant polyphenols - secondary metabolism and chemical defence: some observations. Phytochemistry 24: 33 (1985).CrossRefGoogle Scholar
  34. 34.
    Lane, H.C.; Schuster, M.F. Condensed tannins of cotton leaves. Phytochemistry 20: 425 (1981).CrossRefGoogle Scholar
  35. 35.
    Waage, S.K.; Hedin, P.A.; Grimley, E. A biologically-active procyanidin from Machaerium fioribundum. Phytochemistry 23: 2785 (1984).CrossRefGoogle Scholar
  36. 36.
    Yokoyama, V.Y.; Mackey, B.E. Protein and tannin in upper, middle, and lower cotton plant strata and cigarette beetle (Coleoptera: Anobiidae) growth on foliage. J. Econ. Entomol. 80: 843 (1987).Google Scholar
  37. 37.
    Feeny, P.P.; Bostock, H. Seasonal changes in the tannin content of oak leaves. Phytochemistry 7: 871 (1968).CrossRefGoogle Scholar
  38. 38.
    Scalbert, A.; Haslam, E. Polyphenols and chemical defence of the leaves of Quercus robur. Phytochemistry 26: 3191 (1987).CrossRefGoogle Scholar
  39. 39.
    Klocke, J.A.; Chan, B.G. Effects of cotton condensed tannin on feeding and digestion in the cotton pest, Heliothis zea. J. Insect Physiol. 28: 911 (1982).CrossRefGoogle Scholar
  40. 40.
    Reese, J.C.; Chan, B.G.; Waiss, A.C., Jr. Effects of cotton condensed tannin, maysin (corn), and pinitol (soybeans) on Heliothis zea growth and development. J. Chem. Ecol. 8: 1429 (1982).CrossRefGoogle Scholar
  41. 41.
    Martin, M.M.; Martin, J.S. Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts. Oecologia 61: 342 (1984).CrossRefGoogle Scholar
  42. 42.
    Feeny, P.P. Effect of oak leaf tannins on larval growth of the winter moth Operophtera bramata. J. Insect Physiol. 14: 805 (1968).CrossRefGoogle Scholar
  43. 43.
    Feeny, P.P. Plant apparency and chemical defense. In: Wallace, J.W.; Mansell, R.L. (eds.) Recent Advances in Phytochemistry–Biochemical Interactions between Plants and Insects. Vol. 10. Plenum Publishing Company, New York; pp. 1–40 (1976).Google Scholar
  44. 44.
    Robbins, C.T.; Hanley, T.A.; Hagerman, A.E.; Hjeljord, O.; Baker, D.L.; Schwartz, C.C.; Mautz, W.W. Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68: 98 (1987).CrossRefGoogle Scholar
  45. 45.
    Robbins, C.T.; Mole, S.; Hagerman, A.E.; Hanley, T.A. Role of tannins in defending plants against ruminants: reduction in dry matter digestion? Ecology 68: 1606 (1987).CrossRefGoogle Scholar
  46. 46.
    Kubo, I.; Matsumoto, T.; Hanke, F.J.; Taniguchi, M.; Hayashi, Y. Epicatechin can cause the seedling growth inhibitor, nagilactone E, to induce growth stimulation. Exp erientia 41: 1462 (1985).Google Scholar
  47. 47.
    Buta, J.G.; Lusby, W.R. Catechins as germination and growth inhibitors in Lespedeza seeds. Phytochemistry 25: 93 (1986).CrossRefGoogle Scholar
  48. 48.
    Cezard, R. Orobanchaceae. II. Breaking dormancy in orobanchaceous seeds by removing an endogenous inhibition. Bull. Acad. Soc. Lorraine Sci. 12: 97 (1973).Google Scholar
  49. 49.
    Fadl, M.S.; Baz, A.G.I.O.; Tayel, S. Dormancy termination in apricot seeds. II. Interaction between endogenous phenols and germination. Egypt. J. Physiol. Sci. 5: 303 (1980).Google Scholar
  50. 50.
    Naqvi, H.H.; Hanson, G.P. Germination and growth inhibitors in guayule (Parthenium argentatum Gray) chaff and their possible influences in seed dormancy. Amer. J. Bot. 69: 985 (1982).CrossRefGoogle Scholar
  51. 51.
    Espelie, K.E.; Davis, R.W.; Kolattukudy, P.E. Composition, ultrastructure and function of the cutin-and suberin-containing layers in the leaf, fruit peel, juice-sac and inner seed coat of grapefruit (Citrus paradisi Macfed.). Planta 149: 498 (1980).CrossRefGoogle Scholar
  52. 52.
    Aastrup, S.; Outtrup, H.; Erdal, K. Location of the proanthocyanidins in the barley grain. Carlsberg Res. Commun. 49: 105 (1984).CrossRefGoogle Scholar
  53. 53.
    Halloin, J.M. Localization and changes in catechin and tannins during development and ripening of cottonseed. New Phytol. 90: 651.Google Scholar
  54. 54.
    Aparicio-Tejo, P.M.; Pena, J.I. Sanchez-Diaz, M.; Becana, M. Coat phenolic compounds inhibit germination of Halimium halimifolium. Plant Physiol. Suppl. 80: 128 (1986).Google Scholar
  55. 55.
    Egley, G.H.; Paul, R.N., Jr.; Duke, S.O.; Vaughn, K.C. Peroxidase involvement in lignification in water-impermeable seed coats of weedy leguminous and malvaceous species. Plant. Cell and Environ. 8: 253 (1985).Google Scholar
  56. 56.
    Beckman, C.H.; Mueller, W.C.; Mace, M.E. The stabilization of artificial and natural cell wall membranes by phenolic infusion and its relation to wilt disease resistance. Phytopathology 64: 1214 (1974).CrossRefGoogle Scholar
  57. 57.
    Kefeli, V.I.; Kutacek, M. Phenolic substances and their possible role in plant growth regulation. In: Pilet, P.E. (ed.), Plant Growth Regulation. Springer-Verlag, Berlin pp. 181–188, (1977).CrossRefGoogle Scholar
  58. 58.
    Nachft, M.; Feucht, W. Inheritance of phenolic compounds, indoles and growth vigour in Prunus crosses (cherries). Z. Pflanzenzuchtg. 90: 166 (1983).Google Scholar
  59. 59.
    Vaquez, A.; Gesto, D.V. Rooting, endogenous root-inducing cofactors and proanthocyanidins in chestnut. Biol. Plant. 28: 303 (1986).CrossRefGoogle Scholar
  60. 60.
    Podstolski, A.; Sznajder, J.; Wichowska, G. Accumulation of phenolics and growth rate of barley seedlings (Hordeum vulgare L.) Biol. Plant. (Praha) 23: 120 (1981).Google Scholar
  61. 61.
    Johnson, M.A.; Carlson, J.A. Indoleacetic acid oxidase and related enzymes in cultured and seedling Douglas fir. Biochem. Physiol. Pflanzen. 174: 115 (1979).Google Scholar
  62. 62.
    Ranade, S.; David, S.B. Quinones as plant growth regulators. Plant Growth Reg. 3: 3 (1985).CrossRefGoogle Scholar
  63. 63.
    Dangar, T.K.; Basu, P.S. Seasonal changes and metabolism of plant harmones in root nodules of Lens sp. Biol. Plant. 26: 253 (1984).CrossRefGoogle Scholar
  64. 64.
    Vaquez, A.; Gesto, M.D.V. Effect of cold storage on endogenous growth substances in cuttings of Castanea sativa Mill. Phyton 42: 171 (1982).Google Scholar
  65. 65.
    Kefeli, V.I.; Dashek, W.V. Non-hormonal stimulators and inhibitors of plant growth and development. Biol. Rev. Cambridge Philos. Soc. 59: 273 (1984).CrossRefGoogle Scholar
  66. 66.
    Kemp, M.S.; Burden, R.S. Phytoalexins and stress metabolites in the sapwood of trees. Phytochemistry 25: 1261 (1986).CrossRefGoogle Scholar
  67. 67.
    Stumpf, M.A.; Heath, M.C. Cytological studies of the interaction between the cowpea rust fungus and silicon-depleted French bean plants. Physiol. Plant Pathol. 27: 369 (1985).CrossRefGoogle Scholar
  68. 68.
    Kohle, H.; Young, D.H.; Kauss, H. Physiological changes in suspension-cultured soybean cells elicited by treatment with chitosan. Plant Sci. Lett. 33: 221 (1984).CrossRefGoogle Scholar
  69. 69.
    Hammerschmidt, R.; Bonnen, A.M.; Bergstrom, G.C.; Baker, K.K. Association of epidermal lignification with nonhost resistance of cucurbits to fungi. Can. J. Bot. 63: 2393 (1985).CrossRefGoogle Scholar
  70. 70.
    Friend, J. Plant phenolics, lignification and plant disease. In: Reinhold, L.; Harborne, J.B.; Swain, T. (eds) Progress in Phytochemistry. Pergamon Press, New York; pp. 197–261 (1981).Google Scholar
  71. 71.
    DeLeeuw, G.T.N. Deposition of lignin, suberin and callose in relation to the restriction of infection by Botrytis cinerea in ghost spots of tomato fruits. Phytopath. Z. 112: 143 (1985).CrossRefGoogle Scholar
  72. 72.
    Zhou, J.P.; Wang, B.C. Field observation on the epiphytology of tobacco black shank (Phytophthora parasitica f. nicotianae [Breda de Haan] Tucker). Acta Phytopathol. Sin. 14: 39 (1984).Google Scholar
  73. 73.
    Mace, M.E. Bell, A.A.; Stipanovic, R.D. Histochemistry and identification of flavanols in Verticillium wilt-resistant and -suseptible cottons. Physiol. Plant Pathol. 13: 143 (1978).CrossRefGoogle Scholar
  74. 74.
    Mace, M.E.; Howell, C.R. Histochemistry and identification of condensed tannin precursors in roots of cotton seedlings. Can. J. Bot. 52: 2423 (1974).CrossRefGoogle Scholar
  75. 75.
    Ride, J.P. Lignification in wounded wheat leaves in response to fungi and its possible role in resistance. Physiol. Plant Pathol. 5: 125 (1975).CrossRefGoogle Scholar
  76. 76.
    Ostrofsky, W.D.; Shortie, W.C.; Blanchard, R.O. Bark phenolics of American beech (Fagus grandifolia) in relation to the beech bark disease. Eur. J. For. Pathol. 14: 52 (1984).CrossRefGoogle Scholar
  77. 77.
    Feucht, W.; Schmid, P.P.S.; Christ, E. Distribution of flavanols in meristematic and mature tissues of Prunus avium shoots. J. Plant Physiol. 125: 1 (1986).CrossRefGoogle Scholar
  78. 78.
    Biggs, A.R. Wound age and infection of peach bark by Cytospora leucostoma. Can. J. Bot. 64: 2319 (1986).CrossRefGoogle Scholar
  79. 79.
    Wisniewski, M.; Bogle, A.L.; Shortie, W.C.; Wilson, C.L. Interaction between Cystospora leucostoma and host-phenolic compounds in dormant peach trees. J. Amer. Soc. Hort. Sci. 109: 563 (1984).Google Scholar
  80. 80.
    Kuc, J. Induced immunity to plant disease. BioScience 32:854 (1982).Google Scholar
  81. 81.
    Wong, W.C.; Preece, T.F. Erwinia salicis in cricket bat willows: phenolic constituents in healthy and diseased wood. Physiol. Plant Pathol. 12: 349 (1978).CrossRefGoogle Scholar
  82. 82.
    Sztejnberg, A.; Azaiza, H.; Chet, I. The possible role of phenolic compounds in resistance of horticultural crops to Dematophora necatrix Hartig. Phytopathol. Z. 107: 318 (1983).CrossRefGoogle Scholar
  83. 83.
    Conti, G.G.; Bassi, M.; Maffi, D.; Bocci, A.M. Host-parasite relationship in a susceptible and a resistant rose cultivar inoculated with Sphaerotheca pannosa. J. Phytopathol. 117: 312 (1986).CrossRefGoogle Scholar
  84. 84.
    Howell, C.R.; Bell, A.A.; Stipanovic, R.D. Effect of aging on flavonoid content and resistance of cotton leaves to verticillium wilt. Physiol. Plant Pathol. 8: 181 (1976).CrossRefGoogle Scholar
  85. 85.
    Forrest, G.I.; Benda11, D.S. The distribution of polyphenols in the tea plant (Camellia sinensis L.). Biochem. J. 113: 741 (1969).PubMedGoogle Scholar
  86. 86.
    Young, H.; Paterson, V.J. Condensed tannins from white clover seed diffusate. Phytochemistry 19: 159 (1980).CrossRefGoogle Scholar
  87. 87.
    Venere, R.J. Role of peroxidase in cotton resistant to bacterial blight. Plant Sci. Lett. 20: 47 (1980).CrossRefGoogle Scholar
  88. 88.
    Bell, A.A. Biochemical mechanisms of disease resistance. Ann. Rev. Plant Physiol. 32: 21 (1981).CrossRefGoogle Scholar
  89. 89.
    Darvill, A.G.; Albersheim, P. Phytoalexins and their elicitors - a defense against microbial infection in plants. Ann. Rev. Plant Physiol. 35: 243 (1984).CrossRefGoogle Scholar
  90. 90.
    Rhodes, J.M.; Wooltorton, L.S.C. The biosynthesis of phenolic compounds in wounded plant storage tissues. In: Kahl, G. (ed.) Biochemistry of Wounded Plant Tissues. Walter de Gruyter, Berlin; pp. 243–286 (1978).Google Scholar
  91. 91.
    de Jaegher, G.; Boyer, N.; Gaspar, T. Thigmomorphogenesis in Bryonia dioica: changes in soluble and wall peroxidases, phenylalanine ammonia-lyase activity, cellulose, lignin content and monomeric constituents. Plant Growth Reg. 3: 133 (1985).CrossRefGoogle Scholar
  92. 92.
    Thorpe, J.R.; Hall, J.L. Chronology and elicitation of changes in peroxidase and phenylalanine ammonia-lyase activities in wounded wheat leaves in response to inoculation by Botrytis cinerea. Physiol. Plant Pathol. 25: 363 (1984).CrossRefGoogle Scholar
  93. 93.
    van Loon, L.C.; Gerritsen, Y.A.M. Ethylene and a product of aromatic biosynthesis induce pathogenesis-related proteins in hypersensitively reacting tobacco. Plant Physiol. Suppl. 80: 145 (1986).Google Scholar
  94. 94.
    Baldwin, I.T.; Schultz, J.C. Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221: 22 (1983).CrossRefGoogle Scholar
  95. 95.
    Barker, W.G.; Peterson, R.L. Wound responses of Impatiens balsamina seedlings after collet excision. Scanning Electron Micros. 1984: 1001 (1984).Google Scholar
  96. 96.
    Biggs, A.R. Boundary-zone formation in peach bark in response to wounds and Cytospora leucostoma infection. Can. J. Bot. 62: 2814 (1984).CrossRefGoogle Scholar
  97. 97.
    Biggs, A.R. Phellogen regeneration in injured peach tree bark. Ann. Bot. 57: 463 (1986).Google Scholar
  98. 98.
    Kolattukudy, P.E.; Soliday, C.L. Effects of stress on the defensive barriers of plants. In: Key, J.L.; Kosuge, T. (eds.) Cellular and Molecular Biology of Plant Stress. Alan R. Liss, Inc., New York; pp. 381–400 (1985).Google Scholar
  99. 99.
    Tronchet, J. Reactions of the flavonoid substances from aerial parts of Coleus blumei Benth. var Colour Pride (Lamiacees) to various injuries: bruises, thermal shock, water deficiency. Ann. Sci. Univ. Besancon. Bot. 16: 17 (1975).Google Scholar
  100. 100.
    Biddington, N.L. A review of mechanically induced stress in plants. Sci. Hortic. 36: 12 (1985).Google Scholar
  101. 101.
    Rittinger, P.A.; Biggs, A.R.; Peirson, D.R. Histochemistry of lignin and suberin deposition in boundary layers formed after wounding in various plant species and organs. Can. J. Bot. 65: 1886 (1987).CrossRefGoogle Scholar
  102. 102.
    Geballe, G.T.; Galston, A.W. Wound-induced resistance to cellulase in oat leaves. Plant Physiol. 70: 781 (1982).PubMedCrossRefGoogle Scholar
  103. 103.
    DiCosmo, F.; Towers, G.H.N. Stress and secondary metabolism in cultured plant cells. In: Timmermann, B.N.; Steelink, C.; Loewus, F.A. (eds.) Phytochemical Adaptations to Stress. Plenum Publishing Company, New York; pp. 97–175 (1983).Google Scholar
  104. 104.
    Nobloch, K.H.; Berlin, J. Influence of phosphate on the formation of the indole alkaloid and phenolic compounds in cell suspension cultures of Catharanthus roseus: 1. Comparison of enzyme activities and product accumulation. Plant Cell Tissue Organ Culture 2: 333 (1983).CrossRefGoogle Scholar
  105. 105.
    Farmer, E.E. Effects of fungal elicitor on lignin biosynthesis in cell suspension cultures of soybean. Plant Physiol. 78: 338 (1985).PubMedCrossRefGoogle Scholar
  106. 106.
    Gershenzon, J. Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Timmermann, B.N.; Steelink, C.; Loewus, F.A. (eds.) Phytochemical Adaptations to Stress. Plenum Publishing Company, New York; pp. 273–321 (1983).Google Scholar
  107. 107.
    Kolattukudy, P.E. Biochemistry and function of cutin and suberin. Can. J. Bot. 62: 2918 (1984).CrossRefGoogle Scholar
  108. 108.
    Amorim, H.V.; Dougall, D.K.; Sharp, W.R. The effect of carbohydrate and nitrogen concentration on phenol synthesis in Paul’s scarlet rose cells grown in tissue culture. Physiol. Plant. 39: 91 (1977).CrossRefGoogle Scholar
  109. 109.
    Phillips, R.; Henshaw, G.G. The regulation of synthesis in stationary phase cell cultures of Acer pseudoplatanus L. J. Exp. Bot. 28: 785 (1977).CrossRefGoogle Scholar
  110. 110.
    Graham, D.; Patterson, B.D. Responses of plants to low, non-freezing temperatures: proteins, metabolism, and acclimation. Ann. Rev. Plant Physiol. 33: 347 (1982).CrossRefGoogle Scholar
  111. 111.
    Hallam, N.D.; Luff, S.E. Fine structural changes in the leaves of the desiccation-tolerant plant Talbotia elegans during extreme water stress. Bot. Gaz. 141: 180 (1980).CrossRefGoogle Scholar
  112. 112.
    Caldwell, M.M.; Robberecht, R.; Flint, S.D. Internal filters: prospects for UV-acclimation in higher plants. Physiol. Plant. 58: 445 (1983).CrossRefGoogle Scholar
  113. 113.
    Fuhrer, J. Early effects of excess cadmium uptake in Phaseolus vulgaris. Plant, Cell and Environ. 5: 263 (1982).Google Scholar
  114. 114.
    Stermer, B.A.; Hammerschmidt, R. Heat shock induces resistance to Cladosporium cucumerinum and enhances peroxidase activity in cucumbers. Physiol. Plant Pathol. 25: 239 (1984).CrossRefGoogle Scholar
  115. 115.
    Duell-Pfaff, N.; Wellmann, E. Involvement of phytochrome and a blue light photoreceptor in UV-B induced flavonoid synthesis in parsley (Petroselinum hortense Hoffm.) cell suspension cultures. Planta 156: 213 (1982).CrossRefGoogle Scholar
  116. 116.
    Zhakote, A.G.; Negru, F.V.; Gaugash, M.V. The effect of the duration and spectral composition of natural light on grapevine photosynthesis and frost resistance. Fiziol. Biokhim. 1979: 55 (1979).Google Scholar
  117. 117.
    Lillie, R.D. A historical reaction from 1807: iron tannin. J. Histochem. Cytochem. 20: 295 (1972).PubMedCrossRefGoogle Scholar
  118. 118.
    Reichard, A. Zur Kenntnis der Gerbstoffgehaltes der Gerste, des Maltzes and ungehopfler Wurzen. Zeitschrfit fur das gesamte Brauwesen pp. 27, 229–235, 253–258, 271–275 (1904).Google Scholar
  119. 119.
    Johansen, D.A. Plant Microtechnique. McGraw-Hill Book Co., Inc., New York; 523 p. (1940).Google Scholar
  120. 120.
    Mace, M.E. Histochemical localization of phenols in healthy and diseased banana roots. Physiol. Plant. 16: 915 (1963).CrossRefGoogle Scholar
  121. 121.
    Rawlins, T.E.; Takahashi, W.N. Technics of Plant Histochemistry and Virology. National Press, California; 125 p. (1952).Google Scholar
  122. 122.
    Chiang, H.; Norris, D.M. Phenolic and tannin contents as related to anatomical parameters of soybean resistance to agromyzid bean flies. J. Agric. Food Chem. 31: 726 (1983).CrossRefGoogle Scholar
  123. 123.
    Reeve, R.M. Histochemical tests of polyphenols in plant tissues. Stain Technol. 26: 91 (1951).PubMedGoogle Scholar
  124. 124.
    Hoepfener, W. Zwei neue Reaktionen fur Koffeesaure and Chlorogensaure. Chem. Ztg. 56: 991.Google Scholar
  125. 125.
    Vinson, A.E. Fixing and staining tannin in plant tissues with nitrous ethers. Bot. Gaz. 49: 222 (1910).CrossRefGoogle Scholar
  126. 126.
    Reeve, R.M. Histochemical differentiation between tyrosine and chlorogenic acid in plant tissues. I. Nitrous acid reactions and methal chelation of nitrosotyrosine. J. Histochem. Cytochem. 16: 191 (1968).PubMedCrossRefGoogle Scholar
  127. 127.
    Felker, F.C.; Peterson, D.M.; Nelson, O.E. Development of tannin vacuoles in chalaza and seed coat of barley in relation to early chalazal necrosis in the segl mutant. Planta 161: 540 (1984).CrossRefGoogle Scholar
  128. 128.
    Stafford, H.A.; Lester, H.H.; Weider, R.M. Histochemical assay of proanthocyanidin heterogeneity in cell cultures. Plant Sci. 52: 99 (1987).CrossRefGoogle Scholar
  129. 129.
    Gopinathan, K.; Ananthakrishnan, T.N. Morphogenesis and histochemistry of some thrips (Thysanoptera: Insecta)-induced galls. Proc. Indian Natn. Sci. Acad. B51: 413 (1985).Google Scholar
  130. 130.
    Tanrisever, A. New method for the histochemical analysis of condensed tannins and their physiological significance. Ege Univ. Ziraat Fak. Derg. 19: 27 (1982).Google Scholar
  131. 131.
    Feucht, W.; Schmid, P.P.S. Selektiver histochemischer Nachweis von Flavanen (Catechinen) mit p-Dimethylaminozimaldehyd in Sprossen einiger Obstgeholze. Gartenbauwiss. 48: 119 (1983).Google Scholar
  132. 132.
    Aastrup, S.; Outtrup, H. Location and characterization of barley flavonoids during grain filling. Proc. Congr. Eur. Brew. Cony. 20th, 667 (1985).Google Scholar
  133. 133.
    Gardner, R.O. Vanillin-hydrochloric acid as a histochemical test for tannin. Stain Technol. 50: 315 (1975).PubMedGoogle Scholar
  134. 134.
    Sakai, W.S. Simple method for differential staining of paraffin embedded plant material using Toluidine Blue O. Stain Technol. 48: 247 (1973).PubMedGoogle Scholar
  135. 135.
    Nielson, A.J.; Griffith, W.P. Tissue fixation and staining with osmium tetroxide: the role of phenolic compounds. J. Histochem. Cytochem. 26: 138 (1978).PubMedCrossRefGoogle Scholar
  136. 136.
    Parham, R.A.; Kaustinen, H.M. Differential staining of tannin in sections of epoxy-embedded plant cells. Stain Technol. 51: 237 (1976).PubMedGoogle Scholar
  137. 137.
    Parham, R.A.; Kaustinen, H.M. On the site of tannin synthesis in plant cells. Bot. Gaz. 138: 465 (1977).CrossRefGoogle Scholar
  138. 138.
    Lynch, D.V.; Rivera, E.R. Ultrastructure of cells in the overwintering donnant shoot apex of Rhododendron maximum L. Bot. Gaz. 142: 63 (1981).CrossRefGoogle Scholar
  139. 139.
    Jalal, M.A.F.; Collins, H.A. Polyphenols of mature plant, seedling and tissue cultures of Theobroma cacao. Phytochemistry 16: 1377 (1977).CrossRefGoogle Scholar
  140. 140.
    Mikeladze, R.M.; Shalamberidze, S.M. Histochemical investigation of the kinetics of tannin and caffeine extraction from tea leaves. Soobsch. Akad. Nauk Gruz. SSR 46: 645 (1967).Google Scholar
  141. 141.
    Shipilova, S.V.; Zaprometov, M.N. Phenylalanine ammonia-lyase and synthesis of catechins in the tea plant. Sou. Plant Physiol. (Engl. Trans]..) 24: 657 (1978).Google Scholar
  142. 142.
    Kefeli, V.I.; Turetskaya, R.K. Localization of natural phenolic growth inhibitors in cells of willow leaves. Dokl. Akad. Nauk SSSR 170: 472 (1966).Google Scholar
  143. 143.
    Hubik, J.; Starhova, H.; Housova, B. Study of the drug Radix rhei of domestic origin. II. Localization of anthracene derivatives and tannins in the plant. Cesk. Farm. 28: 234 (1979).PubMedGoogle Scholar
  144. 144.
    Kubo, I.; flanke, F.J. A possible new role for the flavan-3-ol (-)-epicatechin in plants. In: Cody, V.; Middleton, E., Jr.; Harborne, J.B. (eds.) Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity Relationships. Alan R. Liss, Inc., New York; pp. 101–112 (1986).Google Scholar
  145. 145.
    Mahadeswaraswamy, V.P.; Theresa, Y.M.; Nayudamma, Y. Histochemical studies on the distribution of tannins in Indian and African babul barks (Acacia nilotica ssp. indica and A. nilotica ssp. nilotica). Leather Sci. 27: 157 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Linda Chalker-Scott
    • 1
  • Robert L. Krahmer
    • 1
  1. 1.Department of Forest ProductsOregon State UniversityCorvallisUSA

Personalised recommendations