Interaction of Condensed Tannins with Biopolymers

  • Luanne F. Tilstra
  • Wolfgang R. Bergmann
  • Donghwan Cho
  • Wayne L. Mattice


Condensed tannins form complexes with a multitude of species, ranging in size from divalent and trivalent metal ions to macromolecules, both naturally occurring and synthetic. Many of these complexes are of low solubility, permitting detection by techniques as simple as precipitation. Determination of the interactions responsible for the initial events in complex formation is facilitated by the use of techniques that can detect the interaction in extremely dilute solution, thereby suppressing the influence of aggregation.


Circular Dichroism Random Coil Condensed Tannin Conformational Property Baton Rouge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haslam, E. Polyphenol-protein interactions. Biochem. J. 139: 285 (1974).PubMedGoogle Scholar
  2. 2.
    Hagerman, A.E.; Butler, L.G. Specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 256: 4494 (1981).PubMedGoogle Scholar
  3. 3.
    Porter, L.J.; Woodruffe, J. Haemanalysis: the relative astringency of proanthocyanidin polymers. Phytochemistry 23: 1255 (1984).CrossRefGoogle Scholar
  4. 4.
    Oh, H.I.; Hoff, J.E.; Armstrong, G.S.; Haff, L.A. Hydrophobic interaction in tannin-protein complexes. J. Agric Food Chem. 28: 394 (1980).CrossRefGoogle Scholar
  5. 5.
    McManus, J.P.; Davis, K.G.; Beart, J.E.; Gaffney, S.H.; Lilley, T.H.; Haslam, E. Polyphenol interactions: Part 1. Introduction; some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J. Chem. Soc. Perkin Trans 2: 1429 (1985).Google Scholar
  6. 6.
    Beart, J.E.; Lilley, T.H.; Haslam, E. Plant polyphenols - secondary metabolism and chemical defense: some observations. Phytochemistry 24: 33 (1985).CrossRefGoogle Scholar
  7. 7.
    Bergmann, W.R.; Mattice, W.L. Specific interactions of (+)-catechin and (-)-epicatechin with polymers that contain the L-prolyl residue. A CS Symp. Sçr. 358: 162 (1987).Google Scholar
  8. 8.
    Bergmann, W.R.; Barkley, M.D.; Hemingway, R.W.; Mattice, W.L. Heterogeneous fluorescence decay of 4 -+ 6 and 4 -’ 8 linked dimers of (+)-catechin and (-)-epicatechin with axial or equatorial dihydroxyphenyl rings at C(2). J. Amer. Chem. Soc. 109: 6614 (1987).CrossRefGoogle Scholar
  9. 9.
    Tilstra, L.F.; Maeda, H.; Mattice, W.L. Interaction of (+)-catechin with the edge of the,C3 sheet formed by poly(S-carboxymethyl-L-cysteine). J. Chem. Soc., Perkin Trans. 2: 1613 (1988).Google Scholar
  10. 10.
    Nagasawa, M.; Holtzer, A. The helix-coil transition in solutions of polyglutamic acid. J. Amer. Chem. Soc. 86: 538 (1964).CrossRefGoogle Scholar
  11. 11.
    Maeda, H.; Gatto, Y.; Ikeda, S. Effects of chain length and concentration on the 0-coil conversion of poly[S-(carboxymethyl)-L-cysteine] in 50 mM NaCl solutions. Macromolecules 17: 2031 (1984).CrossRefGoogle Scholar
  12. 12.
    Fessler, J.H.; Ogston, A.G. Studies of the sedimentation, diffusion, and viscosity of some sarcosine polymers in aqueous solution. Trans. Faraday Soc. 47: 667 (1951).CrossRefGoogle Scholar
  13. 13.
    Lupu-Lotan, N.; Yaron, A.; Berger, A.; Sela, M. Conformation changes in the nonionizable water-soluble synthetic polypeptide poly-N5-(3-hydroxypropyl)-L-glutamine. Biopolymers 3: 625 (1965).PubMedCrossRefGoogle Scholar
  14. 14.
    Mattice, W.L.; Mandelkern, L. Conformational properties of poly-L-proline form II in dilute solution. J. Amer. Chem. Soc. 93: 1769 (1971).CrossRefGoogle Scholar
  15. 15.
    Clark, D.S.; Mattice, W.L. Hydrodynamic properties and unperturbed dimensions of poly(ryhydroxyl-L-praline) in aqueous solution. Macromolecules 10: 369 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    Darsey, J.A.; Mattice, W.L. Local configuration of poly(L-proline) in dilute solution. Macromolecules 15: 1626 (1982).CrossRefGoogle Scholar
  17. 17.
    Tilstra, L.F. Polypeptides: conformational transition and complex formation with catechins and procyanidins. Ph.D. Dissertation, Louisiana State University, Baton Rouge (1987).Google Scholar
  18. 18.
    Bergmann, W.R. Fluorescence of proanthocyanidin polymers. Ph.D. Dissertation, Louisiana State University, Baton Rouge (1986).Google Scholar
  19. 19.
    Mattice, W.L.; Scheraga, H.A. Matrix formulation of the transition from a statistical coil to an intramolecular antiparalled ß sheet. Biopolymers 23: 1701 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    Mattice, W.L.; Tilstra, L.F. Basis for large differences in the cooperativity of the formation of antiparallel ß-sheets and clusters of interacting a-helices in isolated chains. Biopolymers 26: 203 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Luanne F. Tilstra
    • 1
  • Wolfgang R. Bergmann
    • 1
  • Donghwan Cho
    • 2
  • Wayne L. Mattice
    • 2
  1. 1.Department of ChemistryLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Polymer ScienceThe University of AkronAkronUSA

Personalised recommendations