Chemistry of Tannin-Protein Complexation

  • Ann E. Hagerman


The importance of tannin-protein interactions in leathermaking and in plant-animal interactions has long been recognized, but detailed knowledge of the chemistry of the interaction has only recently become available. Tannin-protein interactions are influenced by characteristics of the protein (including size, amino acid composition, pI, and extent of post translational modification), characteristics of the tannin (size, structure, heterogeneity of the preparation), and conditions of the reaction (pH, temperature, solvent composition, time). The most familiar tannin-protein interactions result in precipitation of the complex, but soluble complexes also form under certain conditions. Both soluble and insoluble complexes are stabilized by reversible, noncovalent bonds between tannin and protein.


Condensed Tannin Hydrolyzable Tannin Insoluble Complex Vegetable Tannin Pentagalloyl Glucose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bate-Smith, E.C.; Swain, T. In Mason, H.S.; Florkin, A.M. (eds.) Comparative Biochemistry, Academic Press, New York (1962)Google Scholar
  2. 2.
    Gustayson, K.H. The Chemistry of Tanning Processes. Academic Press, New York. (1956)Google Scholar
  3. 3.
    Lea, A.G.H. The phenolics of ciders: Oligomeric and polymeric procyanidins. Phytochemistry 29: 471 (1978).Google Scholar
  4. 4.
    Rhoades, D.F.; Cates, R.G. Toward a general theory of plant antiherbivore chemistry. In Wallace, J.W., Mansell, R.L. (eds.) Biochemical Interaction Between Plants and Insects. ( Recent Advances in Phytochemistry) Plenum Publishing Company, New York (1976)Google Scholar
  5. 5.
    Feeny, P. Plant apparency and chemical defense. In Wallace, J.S.; Mansell, R.L. (eds.) Biochemical Interaction Between Plants and Insects. (Recent Advances in Phytochemistry). Plenum Publishing Company, New York (1976).Google Scholar
  6. 6.
    Mole, S.; Waterman, P.G. A critical analysis of techniques for measuring tannins in ecological studies. II. Techniques for biochemically defining tannins. Oecologia 72: 148 (1987).CrossRefGoogle Scholar
  7. 7.
    Mehansho, H.; Butler, L.G.; Carlson, D.M. Dietary tannins and salivary proline-rich proteins: Interattractions, induction and defense mechanisms. Ann. Rev. of Nutr. 7: 423 (1987).CrossRefGoogle Scholar
  8. 8.
    Loomis, W.D.; Battaile, J. Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 5: 423 (1966).CrossRefGoogle Scholar
  9. 9.
    Anderson, J.S. Extraction of enzymes and subcellular organelles from plant tissues. Phytochemistry 7: 1973 (1968).Google Scholar
  10. 10.
    McManus, J.P.; Davis, K.G.; Beart, J.E.; Gaffney, S.H.; Lilley, T.H.; Haslam, E. Polyphenol interactions. Part 1. Introduction; Some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J. Chem. Soc. Perkin Trans. 2: 1429 (1985).Google Scholar
  11. 11.
    Beart, J.E.; Lilley, T.H.; Haslam, E. Plant polyphenols-secondary metabolism and chemical defense: Some observations. Phytochemistry 24: 33 (1985).CrossRefGoogle Scholar
  12. 12.
    Gustayson, K.H. Interaction of vegetable tannins with polyamides as proof of the dominant function of the peptide bond of collagen for its binding of tannins. J. Polym. Sci. 12: 317 (1954).Google Scholar
  13. 13.
    Russell, A.E.; Shuttleworth, S.G.; Williams-Wynn, D.A. Further studies on the mechanism of vegetable tannage: Part V: Chromatography of vegetable tannins on collagen and cellulose. Soc. Leather Trades Chemists J. 52: 459 (1968).Google Scholar
  14. 14.
    Hagerman, A E; Butler, L.G. Specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 256: 494 (1981).Google Scholar
  15. 15.
    Hagerman, A.E.; Butler, L.G. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 26: 809 (1978).CrossRefGoogle Scholar
  16. 16.
    Ezaki-Furuidii, E.; Nonaka, G.; Nishioka, I.; Hayashi, K. Affinity of procyanidins (condensed tannins) from the bark of Rhaphiolepis umbellata for proteins. Agric. Biol. Chem. 51: 115 (1987).CrossRefGoogle Scholar
  17. 17.
    Oh, H.I.; Hoff, J.E.; Armstrong, G.S.; Haff, L.A. Hydrophobic interaction in tannin-protein complexes. J. Agric. Food Chem. 28: 394 (1980).CrossRefGoogle Scholar
  18. 18.
    Pierpoint, W.S. 0-quinones formed in plant extracts. Their reaction with bovine serum albumin. Biochem. J. 112: 619 (1969).PubMedGoogle Scholar
  19. 19.
    Hagerman, A.E.; Butler, L.G. Determination of protein in tannin-protein precipitates. J. Agric. Food Chem. 28: 944 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    Hagerman, A.E.; Butler, L.G. Condensed tannin purification and characterization of tannin-associated proteins. J. Agric. Food Chem. 28: 947 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    Hoff, J.E.; Singleton, K.I. A method for determination of tannins in foods by means of immobilized protein. J. Food Sci. 42: 1566 (1977).CrossRefGoogle Scholar
  22. 22.
    Merrill, H.B.; Cameron, D.H.; Ellison, H.L.: Hall, C.P. The stripping of vegetable tannins from leather by aqueous organic solvents. J. Am. Leather Chemists Assoc. 42: 536 (1947).Google Scholar
  23. 23.
    Katzenellenbogen, W.; Dobryszydca, W.M. Immunochemical properties of serum proteins after regeneration from protein-tannin complexes. Nature 193: 1888 (1962).Google Scholar
  24. 24.
    Hagerman, A.E.; Robbins, C.T. Implications of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms. J. Chem. Ecol. 13: 1243 (1987).CrossRefGoogle Scholar
  25. 25.
    McManus, J.P.; Davis, K.G.; Lilly, T.H.; Haslam, E. The association of proteins with polyphenols. J. Chem. Soc. Chem. Comm.: 309 (1981).Google Scholar
  26. 26.
    Calderon, P.; Van Buren, J.; Robinson, W.B. Factors influencing the formation of precipitates and hazes by gelatin and condensed and hydrolyzable tannins. J. Agric. Food Chem. 16: 479 (1968).CrossRefGoogle Scholar
  27. 27.
    Fishman, M.L.; Neucere, N.J. Partial characterization of tannin-protein complexes in five varieties of grain sorghum by automated gel filtration chromatography. J. Agric. Food Chem. 28: 477 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    Takechi, M.; Tanaka, Y. Binding of 1,2,3,4,6-pentagalloylglucose to proteins, lipids, nucleic acids and sugars. Phytochemistry 26: 95 (1987).CrossRefGoogle Scholar
  29. 29.
    Van Buren, J.P.; Robinson, W.B. Formation of complexes between protein and tannic acid. J. Agric. Food Chem. 17: 772 (1969).CrossRefGoogle Scholar
  30. 30.
    Asquith, T.N.; Butler, L.G. Use of dye-labeled protein as spectrophotometric assay for protein precipitants such as tannin. J. Chem. Ecol. 22: 1535 (1985).CrossRefGoogle Scholar
  31. 31.
    Hagerman, A.E. Condensed tannin of sorghum grain: Purification and interactions with proteins. Ph.D. Dissertation. Purdue University, W. Lafayette, Indiana, 1980.Google Scholar
  32. 32.
    Jones, W.W.; Mangan, J.L. Complexes of the condensed tannins of sainfoin (Onobrychis viciifolia Scop.) with fraction I leaf protein and with submaxillary mucoprotein, and their reversal by polyethylene glycol and pH. J. Sci. Food Agric. 28: 126 (1977).CrossRefGoogle Scholar
  33. 33.
    Strumeyer, D.H.; Malin, M.J. Resistance of extracellular yeast invertase and other glycoproteins to denaturation by tannins. Biochem. J. 118: 899 (1970).PubMedGoogle Scholar
  34. 34.
    Asquith, T.N.; Uhlig, J.; Mehansho, H.; Putnam, L.; Carlson, D.M.; Butler, L. Binding of condensed tannins to salivary proline-rich glycoproteins: The role of carbohydrate. J. Agric. Food Chem. 35: 331 (1987).CrossRefGoogle Scholar
  35. 35.
    Asano, K.; Shinagawa, K.; Hashimoto, N. Characterization of haze-forming proteins of beer and their roles in chill haze formation. J. Amer. Soc. of Brewing Chemists 40: 147 (1982).Google Scholar
  36. 36.
    Zucker, W.V. Tannins: Does structure determine function? An ecological perspective. Am. Nat. 121: 335 (1983).CrossRefGoogle Scholar
  37. 37.
    Gaffney, S.H.; Martin, R.; Lilley, T.H.; Haslam, E.; Magnolato, D. The association of polyphenols with caffeine and a-and ß-cyclodextrin in aqueous media. J. Chem. Soc. Chem. Commun.: 107 (1986).Google Scholar
  38. 38.
    Strumeyer, D.H.; Malin, M.J. Condensed tannins in grain sorghum: Isolation, fractionation, and characterization. J. Agric. Food Chem. 23: 909 (1975).PubMedCrossRefGoogle Scholar
  39. 39.
    Asquith, T.N.; Butler, L.G. Interactions of condensed tannins with selected proteins. Phytochemistry 25: 1591 (1986).CrossRefGoogle Scholar
  40. 40.
    Hagerman, A.E. Radial diffusion method for determining tannin in plant extracts. J. Chem. Ecol. 13: 437 (1987).CrossRefGoogle Scholar
  41. 41.
    Ozawa, T.; Lilley, T.H.; Haslam, E. Polyphenol interactions: Astringency and the loss of astringency in ripening fruit. Phytochemistry 26: 2937 (1987).CrossRefGoogle Scholar
  42. 42.
    Haslam, E. Vegetable tannins. In Swain, T.; Harborne, J.B.; VanSumere, C.F. (eds.) Biochemistry of Plant Phenolics (Recent Advances in Phytochemistry). Plenum Publishing Company, New York, pp. 475–523 (1979).Google Scholar
  43. 43.
    Porter, L.J.; Woodruffe, J. Haemanalysis: The relative astringency of proanthocyanidin polymers. Phytochemistry 23: 1255 (1984).CrossRefGoogle Scholar
  44. 44.
    Hagerman, A.E.; Klucher, K.M. Tannin-protein interactions. In Cody, V.; Middleton, E.; Harborne, J. (eds.) Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological and Structure Activity Relationships. Alan R. Liss, Inc., New York, pp. 67–76 (1986).Google Scholar
  45. 45.
    Haslam, E. Polyphenol-protein interactions. Biochem. J. 139: 285 (1974).PubMedGoogle Scholar
  46. 46.
    Butler, L.G. Relative degree of polymerization of sorghum tannin during seed development and maturation. J. Agric. Food Chem. 30: 1090 (1982).CrossRefGoogle Scholar
  47. 47.
    Asano, K.; Ohtsu, K.; Shinagawa, K.; Hashimoto, N. Affinity of proanthocyanidins and their oxidation products for haze-forming proteins of beer and the formation of chill haze. Agric. Biol. Chem. 48: 1139 (1984).CrossRefGoogle Scholar
  48. 48.
    Roux, D.G. Recent advances in the chemistry and chemical utilization of the natural condensed tannins. Phytochemistry 11: 1219 (1972).CrossRefGoogle Scholar
  49. 49.
    Bate-Smith, E.C. Haemanalysis of tannins: The concept of relative astringency. Phytochemistry 12: 907 (1973).CrossRefGoogle Scholar
  50. 50.
    Artz, W.E.; Bishop, P.D.; Dunker A.K.; Schanus, E.G.; Swanson, B.G. Interaction of synthetic proanthocyanidin dimer and trimer with bovine serum albumin and purified bean globulin fraction G-1. J. Agric. Food Chem. 35: 417 (1987).CrossRefGoogle Scholar
  51. 51.
    Bate-Smith, E.C. Phytochemistry of proanthocyanidins. Phytochemistry 14: 1107 (1975).CrossRefGoogle Scholar
  52. 52.
    Takechi, M.; Tanaka, Y.; Takehara, M.; Nonaka, G.I.; Nishioka, I. Structure and antiherpetic activity among the tannins. Phytochemistry 24: 2245 (1985).CrossRefGoogle Scholar
  53. 53.
    Martin, M.M.; Rockholm, D.C.; Martin, J.S. Effects of surfactants, pH and certain cations on precipitation of proteins by tannins. J. Chem. Ecol. 11: 485 (1985).CrossRefGoogle Scholar
  54. 54.
    Austin, P.J.; Suchar, L.A.; Robbins, C.T.; Hagerman, A.E. Tannin binding proteins in the saliva of deer and their absence in the saliva of sheep and cattle. J. Chem. Ecol. 15: 1335 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Ann E. Hagerman
    • 1
  1. 1.Department of ChemistryMiami UniversityOxfordUSA

Personalised recommendations