Tannins — Their Place in Plant Metabolism

  • Norman G. Lewis
  • Etsuo Yamamoto


Terrestrial vascular plants synthesize, in addition to structural polymers like cellulose and lignin, a rather bewildering array of metabolic products, such as lignans, phenolic acids, tannins, alkaloids, terpenoids etc. Excluding the structural polymers, the functions of many of these compounds (i.e., so-called secondary metabolites) are not well understood. This chapter presents an overview of the metabolism of phenylpropanoids, particularly hydrolyzable and condensed tannins, and then reexamines these pathways in the context of their relationships to general plant metabolism. Calculations show that the cost of diversion of biochemical energy of living plants into tannins is high compared to energy requirements for the structural cell wall polysaccharides. Hence, in many high-tannin-content plants, tannin synthesis contributes significantly to captured photosynthetic energy usage. Phenylpropanoid (hence, tannin) synthesis is also particularly important to nitrogen recycling.


Gallic Acid Phenylpropanoid Pathway Shikimic Acid Protocatechuic Acid Hydrolyzable Tannin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wink, M. Plant breeding: Importance of secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 75: 225 (1988).CrossRefGoogle Scholar
  2. 2.
    Zucker, W.V. Does structure determine function? An ecological perspective. Am. Nat. 121: 335 (1983).CrossRefGoogle Scholar
  3. 3.
    Stewart, C.M. Excretion and heartwood formation in living trees. Science 153: 1068 (1966).PubMedCrossRefGoogle Scholar
  4. 4.
    Itakura, Y.; Habermehl, G.; Mebs, D. Tannins occurring in the toxic Brazilian plant Thiloa glaucocarpa. Toricon 25 (12): 1291 (1987).Google Scholar
  5. 5.
    Freudenberg, K. Die Chemie der Naturlischen Gerbstoffe. Springer-Verlag (1920).Google Scholar
  6. 6.
    Weinges, K.; Marb, H.-D.; Goritz, K. Die rotationsbehinderung-an der C(sp2)-C(sp3) bindung der 4-arylsubstituierten polymethoxy-flavane. Chem. Ber. 103: 2336 (1970).CrossRefGoogle Scholar
  7. 7.
    Dewick, P.M. The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 2: 495 (1985).CrossRefGoogle Scholar
  8. 8.
    Ganem, B. From glucose to aromatics — recent developments in natural products of the shikimic acid pathway. Tetrahedron 34: 3353 (1978).CrossRefGoogle Scholar
  9. 9.
    Floss, H.G. The shikimate pathway–an overview. In: Conn, E.E. (ed.). Recent Advances in Phytochemistry 20. Plenum Press pp. 13–56 (1986).Google Scholar
  10. 10.
    Rubin, J.L.; Jensen, R.A. Differentially regulated isozymes of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase from seedlings of Vigna radiata [L] Wilczek. Plant Physiol. 79: 711 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    Jensen, R.A.; Morris, P.; Bonner, C.; Zamir, L.L. Biochemical interface between aromatic amino acid biosynthesis and secondary metabolism. In:Lewis, N.G.; Rake, M.G. (eds.) Plant Cell Wall Polymers: Biogenesis and Biodegradation. ACS Symposium Series 1989 (in press).Google Scholar
  12. 12.
    Mousdale, D.M.; Campbell, M.S.; Coggens, J.R. Purification and characterization of bifunctional dehydroquinase - shikimate = NADP oxidoreductase from pea seedlings. Phytochemistry 26: 2665 (1987).CrossRefGoogle Scholar
  13. 13.
    Ream, J.E.; Steinrucken, H.C.; Porter, C.A.; Sikorski, J.A. Purification and properties of 5-enolpyruvylshikimate-3-phosphate synthase from dark-grown seedlings of Sorghum bicolor. Plant Physiol. 87: 232 (1988).Google Scholar
  14. 14.
    Singh, B.K.; Connelly, J.A. Chorismate mutase isozymes from Sorghum bicolor: Purification and properties. Arch. Biochem. Biophys. 243: 374 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    d’Amato, T.A.; Ganson, R.; Jensen, R.A. Subcellular localization of chorismate-mutase isozymes in protoplasts from mesophyll and suspension-cultured cells of Nicotiana sylvestris. Plants 162: 104 (1984).Google Scholar
  16. 16.
    Shimada, M. Biochemical studies on bamboo lignin and methoxylation in hardwood and softwood lignins. Wood Res. 53: 19 (1972).Google Scholar
  17. 17.
    Gaines, C.G.; Byng, G.S.; Whitaker, R.J.; Jensen, R.A. L-Tyrosine regulation and biosynthesis via arogenate dehydrogenase in suspension-cultured cells of Nicotiana sylvestris Speg et Comes. Planta 156: 233 (1982).CrossRefGoogle Scholar
  18. 18.
    Jung, E.; Zamir, L.O.; Jensen, R.A. Chloroplasts of higher plants synthesize L-phenylalanine via L-arogenate. Proc. Nat. Acad. Sci. USA 83: 7231 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    Connelly, J.A.; Conn, E. E. Tyrosine biosynthesis in Sorghum bicolor: isolation and regulatory properties of arogenate dehydrogenase. Z. Naturforsch. Biosci. 41: 69 (1986).Google Scholar
  20. 20.
    Siehl, D.L.; Connelly, J.A.; Conn, E.E. Tyrosine biosynthesis in Sorghum bicolor. Characteristics of prephenate aminotransferase. Z. Naturforsch. Biosci. 41: 79 (1986).Google Scholar
  21. 21.
    Byng, G.; Whitaker, R.; Flick, C.; Jensen, R.A. Enzymology of L-tyrosine biosynthesis in corn (Zea mays). Phytochemistry 20: 1289 (1981).CrossRefGoogle Scholar
  22. 22.
    Jensen, R.A. Tyrosine and phenylalanine biosynthesis: Relationships between alternative pathways, regulation and subcellular location in the shikimic acid pathway. Recent Adv. Phytochem. 20: 57 (1985).Google Scholar
  23. 23.
    Hillis, W.E. Biosynthesis of tannins. In: Higuchi, T. (ed.) Biosynthesis and Biodegradation of Wood Components. Academic Press, pp. 325–347. (1985).Google Scholar
  24. 24.
    Haddock, E.A.; Gupta, R.K.; Al-Shafi, S.M.K.; Layden, K.; Haslam, E.; Magnolato, D. The metabolism of gallic acid and hexahydroxydiphenic acid in plants: biogenetic and molecular taxonomy considerations. Phytochemistry 21: 1049 (1982).CrossRefGoogle Scholar
  25. 25.
    Haslam, E. The metabolism of gallic acid and hexahydroxydiphenic acid in higher plants. Fortschr. Chem. Org. Naturst. 41: 1 (1982).Google Scholar
  26. 26.
    Haddock, E.A.; Gupta, R.K.; Haslam, E. The metabolism of gallic acid and hexahydroxydiphenic acids in plants. Part 3. Esters of (R)- and (S)-hexahydroxydiphenic acids and dehydrohexahydroxy acid with D-glucopyranose. J. Chem. Soc. Perkin Trans. 1:2535 (1982).Google Scholar
  27. 27.
    Gupta, R.K.; Al-Shaft, S.M.K.; Layden, K.; Haslam, E. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 2. Esters of (S)-hexahydroxydiphenic acid with D-glucopyranose (4C1). J. Chem. Soc. Perkin Trans. 1: 2525 (1982).CrossRefGoogle Scholar
  28. 28.
    Haddock, E.A.; Gupta, R.K.; Al-Shaft, S.M.K.; Haslam, E. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 1. Introduction. Naturally occurring galloyl esters. J. Chem. Soc. Perkin Trans. 1: 2515 (1982).CrossRefGoogle Scholar
  29. 29.
    Haslam, E. Vegetable tannins. In: Conn, E.E. (ed.) The Biochemistry of Plants. Vol. 7. Secondary Plant Products. Academic Press, New York, pp 527–56 (1981).Google Scholar
  30. 30.
    Haslam, E. Vegetable tannins. Rec. Adv. Phytochem. 12: 475 (1979).Google Scholar
  31. 31.
    McMillan, C. The condensed tannins (proanthocyanidins) in seagrasses. Aq. Bot. 20: 351 (1984).CrossRefGoogle Scholar
  32. 32.
    Zenk, M.H. Zur frage der biosynthese von gallussaure. Z. Naturforsch. 196: 83 (1964).Google Scholar
  33. 33.
    El-Basyouni, S.Z.; Chen, D.; Ibrahim, R.K.; Neish, A.C.; Towers G.H.N. The biosynthesis of hydroxybenzoic acids in higher plants. Phytochemistry 3: 485 (1964).CrossRefGoogle Scholar
  34. 34.
    Conn, E.E.; Swain, T. Biosynthesis of gallic acid in higher plants. Chem. Ind.: 592 (1961).Google Scholar
  35. 35.
    Dewick, P.M.; Haslam, E. Phenol biosynthesis in higher plants. Gallic acid. Biochem. J. 113: 537 (1969).PubMedGoogle Scholar
  36. 36.
    Saijo, R. Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots. Agric. Biol. Chem. 47 (3): 455 (1983).CrossRefGoogle Scholar
  37. 37.
    Amrhein, N.; Topp, H.; Joop, O. The pathway of gallic acid biosynthesis in higher plants. Plant Physiol. Suppl. 75: 18 (1984).Google Scholar
  38. 38.
    Amrhein, N.; Frank, G.; Leming, G.; Lull/maim, H.-B. Inhibition of lignin formation by L-a-aminooxy-ß-phenylpropionic acid, an inhibitor of phenylalanine ammonia lyase. Eur. J. Cell. Biol. 29: 139 (1983).PubMedGoogle Scholar
  39. 39.
    Smart, C.C.; Amrhein, N. The influence of lignification on the development of vascular tissue in Vigna radiata L. Protoplasma 124: 87 (1985).CrossRefGoogle Scholar
  40. 40.
    Rubin, J.L.; Gaines, C.G.; Jensen, R.A. Glyphosate inhibition of 5-einolpyruvylshikimate3-phosphate synthase from suspension cultured cells of Nicotiana sylvestris. Plant Physiol. 75: 839 (1984).CrossRefGoogle Scholar
  41. 41.
    Gross, G.G. Synthesis of mono-, di-, and trigalloyl-β-D-glucose by β-glucogallin dependent galloyltransferases from oak leaves. Z. Naturforsch. 38c: 519 (1983).Google Scholar
  42. 42.
    Gross, G.G.; Schmidt, S.W.; Denzel, K.J. ß-glucogullin dependent acyltransferase from oak leaves. 1. Partial purification and characterisation. J. Plant Physiol. 126: 173 (1986).CrossRefGoogle Scholar
  43. 43.
    Schmidt, S.W.; Denzel, K.; Schilling, G.; Gross, G.G. Enzymatic synthesis of 1,6-digalloylglucose from β-glucogallin: β-glucogallin 6- O-galloyltransferase from oak leaves. Z. Naturforsch. 42c: 87 (1987).Google Scholar
  44. 44.
    Gross, G.G. Enzymology of gallotannin biosynthesis. In:Lewis, N.G.; Paice, M.G. (eds.) Plant Cell Wall Polymers: Biogenesis and Biodegradation. ACS Symposium Series 1989 (in press).Google Scholar
  45. 45.
    Delcour, J.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 9. The condensation sequence of leucocyanidin with (+)-catechin and with the resultant procyanidins. J. Chem. Soc. Perkin Trans. 1: 1711 (1983).CrossRefGoogle Scholar
  46. 46.
    Hemingway, R.W.; Laks, P.E. Condensed tannins: A proposed route to 2R, 3R (2, 3-cis)proanthocyanidins. J. Chem. Soc. Chem. Commun.: 746 (1985).Google Scholar
  47. 47.
    Ayabe, S.; Udagawa, A.; Furuya, T. NAD(P)H-dependent 6’-deoxychalcone synthase activity in Glycyrrhiza echinata cells induced by yeast extract. Arch. Biochem. Biophys. 261 (2): 458 (1988).PubMedCrossRefGoogle Scholar
  48. 48.
    Ayabe, S.; Udagawa, A.; Furuya, T. Stimulation of chalcone synthase activity by yeast extract in cultured Glycyrrhiza echinata cells and 5-deoxyflavone formation by isolated protoplasts. Plant Cell Reports 7: 35 (1988).CrossRefGoogle Scholar
  49. 49.
    Welle, R.; Grisebach, H. Isolation of a novel NADPH-dependent reductase which coacts with chalcone synthase in the biosynthesis of 6’-deoxychalcone. FEBS Lett. 236 (1): 221 (1988).CrossRefGoogle Scholar
  50. 50.
    duPreez, I.C.; Rowan, A.C.; Roux, D.G. A biflavonoid proanthocyanidin carboxylic acid and related biflavonoids from Acacia luederitzii Engl. var retinens (Sim.) J. Ross + Brenan. J. Chem. Soc. Chem. Commun.: 492 (1970).Google Scholar
  51. 51.
    Atkinson, D.E. Functional stoichiometric coupling and metabolic prices. In: Cellular Energy Metabolism and its Regulation. Academic Press, New York, pp. 31–83 (1977).Google Scholar
  52. 52.
    Laber, B.; Kiltz, H.-H.; Amrhein, N. Inhibition of phenylalanine ammonia lyase in vitro and in vivo by (1-amino-2-phenylethyl) phosphonic acid, the phosphonic analogue of phenylalanine. Z. Naturforsch. 41c: 49 (1986).Google Scholar
  53. 53.
    Carom, E.L.; Towers, G.H.N. Phenylalanine ammonia lyase. Phytochemistry 12: 961 (1973).CrossRefGoogle Scholar
  54. 54.
    Amrhein, N.; Zenk, M.H.. Untersuchungen zur rolle der phenylalanin-ammonium-lyase (PAL) bei der regulation der flavonoidesynthese in buchweitzen (Fagopyrum esculentum Moench). Z. Pflanzenphysiol. 64: 145 (1971).Google Scholar
  55. 55.
    Pirie, A.; Mullins, M.G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate and abscisic acid. Plant Physiol. 58: 468 (1976).PubMedCrossRefGoogle Scholar
  56. 56.
    Graham, R.D. Effects of nutrient stress on susceptibility of plants to disease with particular reference to the trace elements. In: Woolhouse, H.W., (ed.), Advances in Botanical Research. Academic Press, New York, Vol. 10, pp. 221–276 (1983).Google Scholar
  57. 57.
    Pankhurst, C.E.; Jones, W.T. Effectiveness of Lotus root nodules III. Effect of combined nitrogen on nodule effectiveness and flavolan synthesis in plant roots. J. Exp. Bot. 30: 1109 (1979).CrossRefGoogle Scholar
  58. 58.
    Minamikawa, T.; Yoshida, S. Kotoshokubutsu no nizitaisha Kenkyuho. (In Japanese) Gakkaishuppan Center, Tokyo (1980).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Norman G. Lewis
  • Etsuo Yamamoto
    • 1
  1. 1.Departments of Wood Science and BiochemistryVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations