Carbohydrate — Polyphenol Complexation

  • Ya Cai
  • Simon H. Gaffney
  • Terence H. Lilley
  • Edwin Haslam


Comprehensive studies of the complexation of polyphenols (vegetable tannins) with other substrates are of great practical significance and utility. Fundamental studies of these phenomena form part of the strategy adopted in Sheffield to pursue an understanding of the possible function and metabolic role of this distinctive group of natural products. With regard to polyphenols, molecular size, conformational mobility and shape, and water solubility are the three principal critera that most strongly influence association with polysaccharides. The differing affinities of polyphenols for polysaccharides result from a balance between a variety of effects- adsorption, sequestration, and solvation. The importance of polyphenol sequestration into “pores” in the polysaccharide structure has been demonstrated by model studies with Schardinger dextrans or cyclodextrins.


Inclusion Complex Carbohydrate Complexation Chemical Shift Change Plant Polyphenol Cyclodextrin Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bu’Lock, J.D. Intermediary metabolism and antiobiotic synthesis. Adv. Appl. Microbiol. 3: 293 (1961).PubMedCrossRefGoogle Scholar
  2. 2.
    Haslam, E. Secondary metabolism-fact and fiction. Natural Products Reports Chem. Soc.: 217 (1986).Google Scholar
  3. 3.
    Bu’Lock, J.D. Mycotoxins as secondary metabolites. In Steyn, P.S. (ed.) The Biosynthesis of Mycotoxins. Academic Press, London and New York, p. 1 (1980).Google Scholar
  4. 4.
    Haslam, E. Vegetable tannins. In Conn, E.E. (ed.) The Biochemistry of Plants. Academic Press, New York. 7:527 (1981).Google Scholar
  5. 5.
    Bate-Smith, E.C. The phenolic constituents of plants and their taxonomic significance. 1. Dicotyledons. J. Linn. Soc. (London) Bot. 58: 95 (1962).Google Scholar
  6. 6.
    Baur, P.S.; Walkinshaw, C.H. Fine structure of tannin accumulations in cells of Pinus elliotti (slash pine). Can..1. Bot. 52: 615 (1974).CrossRefGoogle Scholar
  7. 7.
    Feeny, P.P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565 (1970).CrossRefGoogle Scholar
  8. 8.
    Bloomfield, C. Polyphenols in soil formation. J. Sci. Food Agric. 8: 389 (1957).CrossRefGoogle Scholar
  9. 9.
    Spencer, C.M.; Cai, Y.; Martin, R.; Gaffney, S.H.; Goulding, P.N.; Magnolato, D.; Lilley T.H.; Haslam, E. Polyphenol complexation - some comments and observations. Phytochemistry 27: 2397 (1988).CrossRefGoogle Scholar
  10. 10.
    Hillis W.E.; Swain, T. The phenolic constituents of Prunus domestica. II. The analysis of tissues of the victoria plum tree. J. Sci. Food Agric. 10: 135 (1959).CrossRefGoogle Scholar
  11. 11.
    Robinson R.; Robinson, G.M. Leuco-anthocyanidins and leuco-anthocyanidins. Part 1. The isolation of peltogynol and its molecular structure. J. Chem. Soc.: 744 (1935).Google Scholar
  12. 12.
    Bate-Smith, E.C. Tannins of the herbaceous leguminosae. Phytochemistry 122: 1809 (1973).CrossRefGoogle Scholar
  13. 13.
    Porter, L.J.; Foo L.Y.; Furneaux, R.H. Isolation of three naturally occuring O-ß-D-glucopyranosides of procyanidin polymers. Phytochemistry 24: 567 (1985).CrossRefGoogle Scholar
  14. 14.
    Haslam, E.; Shen, Z.; Falshaw, C.P.; Begley, M.J. Procyanidins and polyphenols of Lacer gmelini bark. Phytochemistry 25: 2629 (1986).CrossRefGoogle Scholar
  15. 15.
    Herout, V.; N.J. Uvarova N.J.; Jizba, J. Plant Substances XXVII. The proof of structure of polydine-aglycone from Polypodium volgare L. Coll. Czech Chem. Comm. 32: 3075 (1967).Google Scholar
  16. 16.
    Morimnoto, S.; Nonaka, G.; Nishioka, I. Tannins and related compounds XXXVIII. Isolation and characterization of flavan-3-ol glucosides and procyanidin oligomers from cassia bark (Cinnamonum cassia BLUME). Chem. Pharm. Bull. 34: 633 (1986).CrossRefGoogle Scholar
  17. 17.
    Morimoto, S.; G. Nonaka G.; Nishioka, I. Tannins and related compounds XXXIX. Procyanidin C-glucosides and an acylated flavan-3-ol glucoside from the barks of Cinnamonum cassia BLUME and C. obtusifolium NEES. Chem. Pharm. Bull. 34: 643 (1986).Google Scholar
  18. Kashiwada, Y.; Nonaka G.; Nishioka, I. Tannins and related compounds XLV. Rhubarb (5). Isolation and characterization of flavan-3-ol and procyanidin glucosides. Chem. Pharm. Bull. 34:3208 (1986).Google Scholar
  19. 19.
    McManus, J.P.; Davis, K.G.; Beart, J.E.; Gaffney, S.H.; Lilley, T.H.; Haslam, E. Polyphenol interactions. Part 1. Introduction. Some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J. Chem. Soc. Perkin Trans. 2: 1429 (1985).Google Scholar
  20. 20.
    Haglund, A.C.; Marsden, N.V.B. Hydrophobic and polar contributions to solute affinity for a highly cross-linked water-swollen (Sephadex) gel. J. Polym. Sci. Polym. Lett. 18: 271 (1980).CrossRefGoogle Scholar
  21. 21.
    Brook, A.J.W.; Munday, K.C. Interactions of phenols, anilines and benzoic acids with Sephadex gels. J. Chromatogr. 47: 19 (1970).Google Scholar
  22. 22.
    Haglund, A.C. Adsorption of monosubstituted phenols on Sephadex G-15. J. Chromatogr. 156: 317 (1978).CrossRefGoogle Scholar
  23. 23.
    deLigny, C.L., Adsorption of monosubstituted phenols on Sephadex G-15. J. Chromatogr. 172: 397 (1979).CrossRefGoogle Scholar
  24. 24.
    Laurent T.C.; Killander, J. A theory of gel filtration and its experimental verification. J. Chromatogr. 14: 317 (1964).CrossRefGoogle Scholar
  25. 25.
    Williams, R.J.P. Lecture, Biochemical Society Annual Meeting, Sheffield. 15 April (1988).Google Scholar
  26. 26.
    Bender; M.; Komiyama, K. Cyclodextrin Chemistry. Springer-Verlag, Basel (1978).CrossRefGoogle Scholar
  27. 27.
    Inoue, Y.; Okuda, T.; Miyata Y.; Chujo, R. NMR studies of cycloamylose-inclusion complexes with substituted phenols. Carbohydrate Res. 125: 65 (1984).CrossRefGoogle Scholar
  28. 28.
    Inoue, Y.; Hoshi, H.; Sakurai, M.; Chujo, R. Geometry of cycloamylose inclusion complexes with some substituted benzenes in aqueous solution based on Carbon-13 NMR chemical shifts. J. Amer. Chem. Soc. 107: 2319 (1985).CrossRefGoogle Scholar
  29. 29.
    Harata, K. The structure of the cyclodextrin complex. V. Crystal structures of a-cyclodextrin complexes with p-nitrophenol and p-hydroxybenzoic acid. Bull. Chem. Soc. Japan 50: 1416 (1977).CrossRefGoogle Scholar
  30. 30.
    Wood, D.J.; Hruska, F.E.; Saenger, W. 1H NMR study of the inclusion of aromatic molecules in -cyclodextrin. J. Amer. Chem. Soc. 99: 1735 (1977).CrossRefGoogle Scholar
  31. 31.
    Johnson C.E.; Bovey, F.A. Calculation of nuclear magnetic resonance spectra of aromatic hydrocarbons. J. Chem. Phys. 29: 1012 (1958).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Ya Cai
    • 1
  • Simon H. Gaffney
    • 1
  • Terence H. Lilley
    • 1
  • Edwin Haslam
    • 1
  1. 1.Department of ChemistryUniversity of SheffieldUK

Personalised recommendations