Reactions at the Interflavanoid Bond of Proanthocyanidins

  • Richard W. Hemingway


Condensed tannins with a 5,7-dihydroxy A-ring are particularly suscep­tible to interflavanoid bond cleavage under either acidic or basic condi­tions. The lability of the interflavanoid bond in this class of tannins has been important in development of analytical tools for determination of their structure and for their synthesis. The greatest hope for the use of condensed tannins of the 5,7-dihydroxy class as a renewable source of specialty chemicals lies in exploitation of the lability of the interfla­vanoid bond. Examples include the synthesis of tannin derivatives for use in cold-setting phenolic resins and biocides. Reductive cleavage of­fers the potential for production of significant yields of flavan-3-ols and low molecular weight proanthocyanidins. Cleavage of the interflavanoid bond with sulfite ion under mild acidic or alkaline conditions produces flavan-and oligomeric procyanidin-4-sulfonates that are useful interme­diates for formulation of fast-setting adhesives. We are just beginning to learn how to use base-catalyzed cleavage reactions to our advantage. It can be anticipated that novel uses will be developed from both acid-and base-catalyzed cleavage products of condensed tannins as further understanding of these reactions is obtained.


Condensed Tannin Specialty Chemical Pyran Ring Wood Adhesive Dimeric Procyanidins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10: 63 (1959).CrossRefGoogle Scholar
  2. 2.
    Ribereau-Gayon, P. Plant Ph enolics. Hafner Publishing Co. New York, pp. 135–168 (1972).Google Scholar
  3. 3.
    Betts, M.J.; Brown, B.R.; Brown, P.E.; Pike, W.T. Degradation of condensed tannins: structure of the tannin from common heather. J. Chem. Soc. Chem. Commun.: 1110 (1967).Google Scholar
  4. 4.
    Sears, K.D.; Casebier, R.L. Cleavage of proa.nthocyanidins with thioglycollic acid. J. Chem. Soc. Chem. Commun.: 1437 (1968).Google Scholar
  5. 5.
    Porter, L.J.; Hrstich, L.N.; Chan. B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25: 223 (1986).CrossRefGoogle Scholar
  6. 6.
    Tiarks, A.E. (unpublished results).Google Scholar
  7. 7.
    Iacobucci, G.A.; Sweeny, J.B. The chemistry of anthocyanins, anthocyanidins and related flavylium salts. Tetrahedron 39: 3005 (1983).CrossRefGoogle Scholar
  8. 8.
    Timberlake, C.R.; Bridle, P. Anthocyanidins: colour augumentation with catechin and acetaldehyde. J. Sci. Food Agric. 28: 539 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    Sears, K.D.; Casebier, R.L. The reaction of thioglycollic acid with polyflavonoid bark fractions for Tsuga heterophylla. Phytochemistry 9: 1589 (1970).CrossRefGoogle Scholar
  10. 10.
    Porter, L.J. Condensed tannins. In:Rowe, J.W. (ed.) Natural Products Extraneous to the Lignocellulosic Cell Wall of Woody Plants. Springer Verlag. Heidelberg, New York (in press).Google Scholar
  11. 11.
    Betts, M.J.; Brown, B.R.; Shaw, M.R. Reaction of flavonoids with mercaptoacetic acid. J. Chem. Soc. (C): 1178 (1969).Google Scholar
  12. 12.
    Brown, B.R.; Shaw, M.R. Reactions of flavanoids and condensed tannins with sulfur nudeophiles. J. Chem. Soc. Perkin Trans. 1: 2036 (1974).Google Scholar
  13. 13.
    Samejima, M.; Yoshimoto, T. Systematic studies on the stereochemical composition of proanthocyanidins from coniferous bark. Mokuzai Gakkashi. 28: 67 (1982).Google Scholar
  14. 14.
    Hemingway, R.W.; Karchesy, J.J.; McGraw, G.W.; Wielesek, R.A. Heterogeneity of interflavanoid bond location in loblolly pine procyanidins. Phytochemistry 22: 275 (1983).CrossRefGoogle Scholar
  15. 15.
    Hemingway, R.W.; Foo. L.Y.; Porter, L. J. Polymeric proanthocyanidins: Interflavanoid linkage isomerism in epicatechin-4)-epicatechin-4)-catechin procyanidins. J. Chem. Soc. Chem. Commun.: 320 (1981).Google Scholar
  16. 16.
    Hemingway, R.W.; Foo, L.Y.; Porter, L.J. Linkage isomerism in trimeric and polymeric 2,3-cis procyanidins. J. Chem. Soc. Perkin Trans. 1: 1209 (1982).Google Scholar
  17. Nonaka, G.; Hsu, F-L.; Nishioka, I. Structures of dimeric, trimeric and tetrameric procyanidins from Areca catechu. J. Chem. Soc. Chem. Commun.:781 (1981).Google Scholar
  18. 18.
    Porter, L.J.; Newman, R.H.; Foo, L.Y.; Wong, H.; Hemingway, R.W. Polymeric proanthocyanidins. 13C-nmr studies of procyanidins. J. Chem. Soc. Perkin Trans. 1: 1217 (1982).Google Scholar
  19. 19.
    Newman, R.H.; Porter, L.J.; Foo, L.Y.; Johns, S.R.; Willing, R.I. High resolution 13C nmr studies of proanthocyanidin polymers. Mag. Res. Chem. 25: 118 (1987).CrossRefGoogle Scholar
  20. 20.
    Gupta, R.K.; Haslam, E. Plant proanthocyanidins. Part 5. Sorghum polyphenols. J. Chem. Soc. Perkin Trans. 1: 892 (1978).Google Scholar
  21. 21.
    Beart, J.E.; Lilley, T.H.; Haslam, E. Polyphenol interactions. Part 2. Covalent binding of procyanidins to proteins during acid-catalysed decomposition; observations on some polymeric proanthocyanidins. J. Chem. Soc. Perkin Trans. 2: 1439 (1985).Google Scholar
  22. 22.
    Patil, A.D.; Desphande, V.H. A new dimeric proanthocyanidin from Cassia fistula sapwood. Indian J. Chem. 21B: 626 (1982).Google Scholar
  23. 23.
    Hemingway, R.W.; Kreibich, R.E. Condensed tannin-resorcinol adducts and their use in wood-laminating adhesives. An exploratory study. J. Appl. Polym. Sci. Polym. Sci. Symp. 40: 79 (1984).Google Scholar
  24. 24.
    Hemingway, R.W.; McGraw, G.W. Kinetics of acid-catalyzed cleavage of procyanidins. J. Wood Chem. and Technol. 3: 421 (1983).CrossRefGoogle Scholar
  25. 25.
    Czochanska, Z.; Foo, L.Y.; Newman, R.H.; Porter, L.J. Polymeric proanthocyanidins. Stereochemistry, structural units and molecular weight. J. Chem. Soc. Perkin Trans. 1: 2278 (1980).Google Scholar
  26. 26.
    Foo, L.Y.; Porter, L.J. Prodelphinidin polymers: Definition of structural units. J. Chem. Soc. Perkin Trans. 1: 1186 (1978).Google Scholar
  27. 27.
    Foo, L.Y. (unpublished results). (1988).Google Scholar
  28. 28.
    Haslam, E. Biogenetically patterned synthesis of procyanidins. J. Chem. Soc. Chem. Commun.: 594 (1974).Google Scholar
  29. 29.
    Foo, L.Y.; Porter, L.J. Synthesis and conformation of procyanidin diastereoisomers. J. Chem. Soc. Perkin Trans. 1: 1535 (1983).Google Scholar
  30. 30.
    Foo, L.Y.; Hemingway, R.W. Condensed tannins: Synthesis of the first `branched’ procyanidin trimer. J. Chem. Soc. Chem. Commun.: 85 (1984).Google Scholar
  31. 31.
    Kreibich, R.E.; Hemingway, R.W. Condensed tannin-resorcinol adducts in laminating adhesives. For. Prod. J. 35: 23 (1985).Google Scholar
  32. 32.
    Hemingway, R.W.; Kreibich, R.E. Condensed tannins-resorcinol adducts and their use in wood laminating adhesives: an exploratory study. J. Appl. Polym. Sci. Polym. Symp. 40: 79 (1984).Google Scholar
  33. 33.
    Laks, P.E. Flavonoid biocides: phytoalexin analogs from condensed tannins. Phytochemistry 26: 1617 (1987).CrossRefGoogle Scholar
  34. 34.
    Goheen, D.W. Chemicals from Lignin. In: Goldstein, I.S. (ed.) Organic Chemicals from Biomass. CRC Press, Boca Raton, Florida, pp. 143–161 (1981).Google Scholar
  35. 35.
    Jacques, D.; Haslam, E.; Bedford, G.R.; Greatbanks, D. Plant proanthocyanidins. Part II. Proanthocyanidin A2 and its derivatives. J. Chem. Soc. Perkin Trans. 1: 2663 (1974).Google Scholar
  36. 36.
    Karchesy, J.J.; Hemingway, R.W. (unpublished results). (1978).Google Scholar
  37. 37.
    Foo, L.Y. Polymeric proanthocyanidins of Photinia glaubrescens, modification of molecular weight and nature of products from hydrogenolysis. Phytochemistry 21: 1741 (1982).Google Scholar
  38. 38.
    Pizzi, A., Tannin-based wood adhesives. In: Pizzi, A. (ed.) Wood Adhesives: Chemistry and Technology. Marcel Dekker, New York, pp. 178–246 (1983).Google Scholar
  39. 39.
    Laks, P.E.; Hemingway, R.W. (unpublished results).Google Scholar
  40. 40.
    Conner, A.H.; Lorenz, L.F. Carbohydrate modified phenol-formaldehyde resins. J. Wood Chem. Technol. 6: 591 (1986).CrossRefGoogle Scholar
  41. 41.
    Hackett, A.M.; Shaw, I.C.; Griffiths, L.A. The prevention by (+)-cyanidanol-3 of hepatitis-induced changes in the disposition of imipramine in the rat. Biochemical Pharm. 33: 2179 (1984).CrossRefGoogle Scholar
  42. 42.
    Perissoud, D.; Weibel, I. Protective effect of (+)-cyanidanol-3 in acute liver injury induced by alactosamine or carbon tetrachloride in the rat. Arch. Pharmacol. 312: 285 (1980).CrossRefGoogle Scholar
  43. 43.
    Blum, A.L.; Doelle, W.; Kortum, K.; Peter, P.; Strohmeyer, G.; Berthet A.; Loebell, H.; Pelloni, S.; Poulsen, H.; Tygstrup, N. Treatment of acute viral hepatitis with (+)cyanidanol-3. The Lancet 12: 1153 (1977).CrossRefGoogle Scholar
  44. 44.
    Laks, P.E. The chemistry and utilization of tree barks, In:Hon, D.N-S.; Shiraishi, N., (eds.), Handbook on Wood and Cellulose Materials, Marcel Dekker, New York. (in press).Google Scholar
  45. 45.
    Chakravarthy, B.K.; Gode, K.D. Isolation of (-)-epicatechin from Pterocarpus marsupium and its pharmacological actions. Planta Med. 51: 56 (1985).PubMedCrossRefGoogle Scholar
  46. 46.
    Porter, L.J. Flavans and proanthocyanidins. In: Harborne, J.B. (ed.) The Flavonoids. Advances in Research Since 1980. Chapman and Hall, Ltd. London, pp. 21–62, (1988).Google Scholar
  47. 47.
    Kiatragrajai, P.; Wellons, J.D.; Gollub, L.; White, J.D. Kinetics of epimerization of (+)catechin and its rearrangement to catechinic acid. J. Org . Chem. 47: 2910 (1982).CrossRefGoogle Scholar
  48. 48.
    Laks, P.E.; Hemingway, R.W. Condensed tannins: base-catalyzed reactions of polymeric procyanidins with toluene-a-thiol. Lability of the interflavanoid bond and pyran ring. J. Chem. Soc. Perkin Trans. 1: 465 (1987).Google Scholar
  49. 49.
    Farkas, L.; Gabor, M.; Kallay, F. Flavonoids and bioflavonoids. Current Research Trends. Elsevier Scientific, New York. (1977).Google Scholar
  50. 50.
    Sears, K.D. Sulfonation of catechin. J. Org . Chem. 37: 3546 (1972).CrossRefGoogle Scholar
  51. 51.
    Foo, L.Y.; McGraw, G.W.; Hemingway, R.W. Condensed tannins: preferential substitution at the interflavanoid bond by sulfite ion. J. Chem. Soc. Chem. Commun.: 672 (1983).Google Scholar
  52. 52.
    Weinges, K.; Bahr, W.; Ebert, W.; Goritz, K.; Marx, H.-D. Konstitution, entstehung, und bedeutung der flavonoid gerbstoffe. Fortschrt. Chem. Org . Naturst. 27: 158 (1969).Google Scholar
  53. 53.
    Laks, P.E.; Hemingway, R.W. (unpublished results).Google Scholar
  54. 54.
    Viviers, P.M.; Kolodziej, H.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 11. Intramolecular enantiomerism of the constituent units of tannins from the Anacardiaceae: stoichiometric control in direct synthesis: Derivation of 1H nuclear magnetic resonance parameters applicable to higher oligomers. J. Chem. Soc. Perkin Trans. 1: 2555 (1983).Google Scholar
  55. 55.
    McGraw, G.W.; Laks, P.E.; Hemingway, R.W. Condensed tannins-desulfonation of hydroxybenzylsulfonic acids related to proanthocyanidin derivatives. J. Wood. Chem. Technol. 8: 91 (1988).CrossRefGoogle Scholar
  56. 56.
    Kreibich, R.E.; Hemingway, R.W. Condensed tannin-sulfonates in cold-setting wood-laminating adhesives. For. Prod. J. 37: 43 (1987).Google Scholar
  57. 57.
    Kreibich, R.E.; Hemingway, R.W. Tannin-based adhesives for finger-jointing wood. In: Hemingway, R.W.; Conner, A.H.; Branham, S.J. (eds.) Adhesives from Renewable Resources. ACS Symposium Series No. 385, American Chemical Society, Washington, DC. pp. 203–216 (1989).Google Scholar
  58. 58.
    Hemingway, R.W.; Foo, L.Y. Condensed tannins: quinone methide intermediates in procyanidin synthesis. J. Chem. Soc. Chem. Commun.: 1035 (1983).Google Scholar
  59. 59.
    Hemingway, R.W.; Laks, P.E. Condensed tannins: a proposed route to 2R,3R-(2,3-cis)proanthocyanidins. J. Chem. Soc. Chem. Commun.: 746 (1985).Google Scholar
  60. 60.
    Jacques, D.; Opie, C.T.; Porter, L.J.; Haslam, E.J. Plant proanthocyanidins. Part 4. Biosynthesis of procyanidins and observations on the metabolism of cyanidin in plants. J. Chem. Soc. Perkin Trans. 1: 1637 (1977).Google Scholar
  61. 61.
    Roux, D.G. Activation of some condensed tannins via facile ring isomerizations: potential adhesive applications. In Hemingway, R.W.; Conner, A.H.; Branham, S J (eds.) Adhesives from Renewable Resources, ACS Symposium Series No. 385, American Chemical Society, Washington, DC. pp. 217–228 (1989).Google Scholar
  62. 62.
    Laks, P.E.; Hemingway, R.W.; Conner, A.H. Condensed tannins: Base-catalyzed reactions of polymeric procyanidins with phloivglucino1. Intramolecular rearrangements. J. Chem. Soc. Perkin Trans. 1: 1875 (1987).Google Scholar
  63. 63.
    Laks, P.E.; Hemingway, R.W. Condensed tannins: structure of the `phenolic acids’. Holzforschung 41: 287 (1987).CrossRefGoogle Scholar
  64. 64.
    Sears, K.D., Ca.sebier, R.L., Hergert, H.L., Stoudt, G.H., McCandlish, L. E. The structure of catecltinic acid, a base-rearrangement product of catechin. J. Org . Chem. 39: 3244 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Richard W. Hemingway
    • 1
  1. 1.Southern Forest Experiment StationUSDA Forest ServicePinevilleUSA

Personalised recommendations