MNDO Molecular Orbital Analyses of Models for Proanthocyanidin-Methylolphenol Reactions

  • Fred L. Tobiason
  • Lori A. Hoff

Abstract

The MNDO molecular orbital method has been applied to molecular structures that model or react with proanthocyanidins. Atom net charge distribution, structural parameters, heats of formation, and ionization potentials are evaluated for: (+)-catechin, (−)-epicatechin, catechol, resorcinol, phloroglucinol, o- and p-methylolphenol, and o-and p-benzoquinone methide in an investigation of chemical reactivity under different pH conditions. Other MO calculations are reviewed, and the optimized MNDO MO parameters are compared with existing literature data. The total net and HOMO electronic charge distribution is evaluated in terms of nucleophilicity and chemical reactivity. The HOMO frontier orbitals in polyhydroxybenzene and the LUMO orbitals in the benzoquinone methides play an important role in chemical reactivity.

Keywords

Microwave Quinone Polyphenol Catechol Catechin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pizzi, A. Wood Adhesives: Chemistry and Technology. Marcel Dekker, New York (1983).Google Scholar
  2. 2.
    MacLean, H.; Gardner, J.A.F. Bark extracts in adhesives. Pulp and Paper Mag. of Canada 53: 111 (1952).Google Scholar
  3. 3.
    Herrick, F.S.; Boch, L.H. Adhesives from bark extracts. For. Prod. J. 8:269 (1958) and US Pat 2,819,295 (to Rayonier, Inc.) Jan 7 (1958).Google Scholar
  4. 4.
    McGraw, G.W.; Ohara, S.; Hemingway, R.W. Reactions of tannin model compounds with methylolphenols: competitive condensations of ortho-and para-hydroxylbenzyl alcohols with resorcinol, phloroglucinol or (+)-catechin. In: Hemingway, R.W., Conner, A.H., Branham, S.J. (eds.) Adhesives from Renewable Resources, American Chemical Society Symposium Series No. 385 pp. 185–202 (1989).Google Scholar
  5. 5.
    Hemingway, R.W.; McGraw, G.W.; Ohara, S. Further studies on the reactions of condensed tannin model compounds with methylolphenol. USDA-Forest Service, Study Plan FS-SO4701–99 (1987).Google Scholar
  6. 6.
    Fleming, I. Frontier Orbitals and Organic Chemical Reactions. Wiley-Interscience, New York (1976).Google Scholar
  7. 7.
    Fukui, K. Theory of Orientation Stereoselection. Springer-Verlag, Berlin (1975).Google Scholar
  8. 8.
    Dewar, M.J.S.; Dougherty, R.C. The PMO Theory of Organic Chemistry. Plenum Publishing Company, New York (1975).CrossRefGoogle Scholar
  9. 9.
    Sadlej, J. Semi-Emperical Methods in Quantum Chemistry. Cooper, I.L., transl. (ed.) Ellis Horward Ltd, Chichester (1985).Google Scholar
  10. 10.
    Konschin, H. An STO-3G orbital investigation of the molecular structure and internal rotation of phenol and catechol. J. Mol. Struct. 92: 173 (1983).CrossRefGoogle Scholar
  11. 11.
    Kudchadker, S.A.; Zwolinski, B.J. Conformational analysis of benzendiols: pyrocatechol, resorcinol and hydroquinone. J. Mol. Sired. 48: 271 (1978).CrossRefGoogle Scholar
  12. 12.
    Marriott, S.; Topsom, R.D. Ab initio calculations of the barriers in some monosubstituted benzenes. Aust. J. Chem. 39: 1157 (1986).CrossRefGoogle Scholar
  13. 13.
    Tylli, H.; Konschin, H. A Raman spectroscopic study of the OH and OD torsion in 1,2dihydroxybenzene. J. Mol. Struct. 57: 13 (1979).CrossRefGoogle Scholar
  14. 14.
    Konschin, H. An STO-3G molecular orbital investigation of planar m-and p-dihydroxybenzene: fully optimized molecular structures. J. Mol. Struct. 110: 267 (1984).Google Scholar
  15. 15.
    Marsili, G.; Cigniti, M. Theoretical study of diphenols and polyphenols. Gass. Chim. Ital. 109: 553 (1979).Google Scholar
  16. 16.
    Elder, T.J.; Worley, S.D. The application of molecular orbital calculations to wood chemistry: IV. The formation of methylol derivatives. J. Wood Chem. Technl. 6: 505 (1986).CrossRefGoogle Scholar
  17. 17.
    Perrin, M.; Thozet, A.; Bertholon, G.; Decoret C.; Royer, J. Comparisons between crystallographic results and theoretical calculations on phenol molecules. J. Mol. Struct. 70: 87 (1981).CrossRefGoogle Scholar
  18. 18.
    Semenov, S.G.; Shevchenko, S.M. Electronic structure and reactivity of methylene-and benzyliceneanthrones. Zhur. Organ. Khim. 21: 368 (1985).Google Scholar
  19. 19.
    Eck, V.; Schweig, A.; Vermeer, H. The ultraviolet photoelectron spectrum of o-benzoquinone. Tetrahedron Letts. 27: 2433 (1978).CrossRefGoogle Scholar
  20. 20.
    Musil, L.; Koutek, B.; Pisova, M.; Soucvek, M. Delocalization and stability of o-and p-quinone methides: an HMO study. Coll. Czech. Chem. Commun. 46: 1148 (1981).CrossRefGoogle Scholar
  21. 21.
    Remko, M.; Polcin, J. CNDO/CI investigation of the electronic spectra of quinone and quinonemethides. Monatsh. Chem. 108: 1313 (1977).CrossRefGoogle Scholar
  22. 22.
    Semenov, S.G.; Shevchenko, S.M. Electronic structure of p-quinonemethide. Zhur. Struk. Khim. 24: 25 (1983).Google Scholar
  23. 23.
    Dewar, M.J.S.; Thiel, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 99: 4899 (1977).CrossRefGoogle Scholar
  24. 24.
    Dewar, M.J.S.; Thiel, W. Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J. Am. Chem. Soc. 99: 4907 (1977).CrossRefGoogle Scholar
  25. 25.
    MOPAC MNDO, Quantum Chemistry Program Exchange #455, Version 4.0. Indiana University, Bloomington, Indiana.Google Scholar
  26. 26.
    Dewar, M.J.S.; Zoebisch, E.G.; Eamonn, F.H.; Stewart, J.J.P. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107: 3901 (1985).Google Scholar
  27. 27.
    Boyd, D.B.; Smith, D.W.; Stewart, J.J.P.; Wimmer, E. Numerical sensitivity of trajectories across conformational energy hypersurfaces from geometry optimized molecular orbital calculations: AMl, MNDO and MINDO/3. J. Comp. Chem. 9: 387 (1988).CrossRefGoogle Scholar
  28. 28.
    Wycoff, R.W.G. Crystal Structures. 2nd Ed. Wiley, New York p. 201, 306 (1975).Google Scholar
  29. 29.
    Wunderlich, H.; Mootz, D. The crystal structure of catechol. Acta Cryst. B27: 1684 (1971).Google Scholar
  30. 30.
    Larsen, N.W. Microwave spectra of the six mono-13C-substituted phenols and of some monodeuterated species of phenol. J. Mol. Struct. 51: 175 (1979).CrossRefGoogle Scholar
  31. 31.
    Onda, M.; Hasunma, K.; Hashimoto, T.; Hamaguchi, I. Microwave spectrum of catechol (1,2-dihydroxybenzene). J. Mol. Struct. 159: 243 (1987).CrossRefGoogle Scholar
  32. 32.
    Brown, C.J. The crystal structure of catechol. Acta Cryst. 21: 170 (1966).CrossRefGoogle Scholar
  33. 33.
    Fronczek, F.R.; Grannuch, G.; Mattice, W.L.; Tobiason, F.L.; Broeker, J.L.; Hemingway R.W. Dipole moment, solution conformation and solid state structure of (-)-epicatechin, a monomer of procyanidin polymers. J. Chem. Soc. Perkin Trans. 2: 1611 (1984).Google Scholar
  34. 34.
    Minkin, V.I.; Osipov, O.A.; Zhdanov, Y.A. Dipole Moments in Organic Chemistry. Plenum Publishing Company, New York (1970).Google Scholar
  35. 35.
    Koopmans, T. Distribution of wave functions and characteristic values among the individual electrons of an atom. Physica 1: 104 (1933).CrossRefGoogle Scholar
  36. 36.
    McClellan, A.L. Tables of Experimental Dipole Moments. Vol. 2. Rahara Enterprises, El Cerrito, California (1974).Google Scholar
  37. 37.
    Cioslowski, J.; Baranski, A.; Juska, T. A simple algorithm for the calculation of the pi-ionization energies of substituted benzenes. Tetrahedron 42: 4549 (1986).CrossRefGoogle Scholar
  38. 38.
    Pedley, J.B.; Naylor, R.D.; Kirby, S.P. Thermochemical Data of Organic Compounds. Chapman and Hall, London p. 130 (1986).Google Scholar
  39. 39.
    Scheffer, J.R.; Wong, Y.G.; Patil A.O.; Curtin, D.Y.; Paul, I.C. CPMAS 13C-NMR spectra of quinones, hydroquinones, and their complexes. J. Am. Chem. Soc. 107: 4898 (1985).CrossRefGoogle Scholar
  40. 40.
    Porter, L.J.; Newman, R.H.; Foo, Yeap; Wong, H.; Hemingway, R.W. Polymeric Proanthocyanidins. 13C-NMR studies of procyanidins. J. Chem. Soc. Perkin Trans. 1: 1217 (1982).CrossRefGoogle Scholar
  41. 41.
    Johnson, L.F.; Jankowski, W.C. Carbon-13 NMR spectra. A Collection of Assigned, Coded, and Indexed Spectra. Wiley-Interscience, New York (1972).Google Scholar
  42. 42.
    Dunlap, B.I.; Cook, M. An NMR study of hydroxy pi-bonding and the conformations of benzyl alcohol and derivatives. Inter. J. Quant. Chem. 29: 767 (1986).CrossRefGoogle Scholar
  43. 43.
    Levy, G.C.; Lichter, R.L.; Nelson, G.L. Carbon-13 Nuclear Magnetic Resonance Spectroscopy. 2nd Ed. Wiley-Interscience, New York pp. 102–104 (1980).Google Scholar
  44. 44.
    Fukui, K.; Yonezawa, T.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys. 20: 722 (1952).CrossRefGoogle Scholar
  45. 45.
    Hemingway, R.W.; Karchesy, J.J.; McGraw, G.W. Phenolic resins, chemistry and applications. Weyerhaeuser Science Symposium 2. Weyerhaeuser Co: Tacoma, Washington pp. 33–69 (1981).Google Scholar
  46. 46.
    Hemingway, R.W. (private communication)Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Fred L. Tobiason
    • 1
  • Lori A. Hoff
    • 1
  1. 1.Department of ChemistryPacific Lutheran UniversityTacomaUSA

Personalised recommendations