FAB-MS Applications in the Elucidation of Proanthocyanidin Structures

  • Douglas F. Barofsky


Fast atom bombardment mass spectrometry (FAB-MS), which requires no chemical derivatization prior to mass spectral analysis, has become a powerful tool for studying the structures of biopolymers. FAB and similar forms of mass spectrometry have the potential for achieving the same degree of importance in the elucidation of proanthocyanidin structure currently accorded nuclear magnetic resonance. The extent and state of research on the use of FAB-MS to determine molecular weight, adduct identity, sequence, branching, and linkage type are reviewed in this paper. Experimental considerations (such as sample introduction, sample matrices, and instrument modes) and mass spectral features associated with the characterization of oligomeric proanthocyanidins are surveyed.


Condense Tannin Liquid Matrix Chemical Ionization Mass Spectrometry Fast Atom Bombardment Mass Spectrometry Procyanidin Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haslam, E. Natural proanthocyanidins. In: Harborne, J.B.; Mabry, T.J.; Mabry, H. (eds.) The Flavonoids, Academic Press, New York, pp. 505–559 (1975).Google Scholar
  2. 2.
    Haslam, E. Proanthocyanidins. In: Harbone, J.B.; Mabry, T.J. (eds.) The Flavonoids: Advances in Research, Chapman and Hall, London, pp. 417–447 (1982).Google Scholar
  3. 3.
    Salunkhe, D.K.; Jadhav, S.J.; Kadam, S.S.; Chavan, J.K. Chemical, biochemical, and biological significance of polyphenols in cereals and legumes. CRC Crit. Rev. Food Sci. Nitr. 17: 277 (1982).CrossRefGoogle Scholar
  4. 4.
    Haslam, E. Symmetry and promiscuity in procyanidin biochemistry. Phytochemistry 16: 1625 (1977).CrossRefGoogle Scholar
  5. 5.
    Delcour, J.A.; Vandeberghe, M.M.; Dondeyne, P.; Schrevens, E.L.; Wijnhoven, J. Flavor and haze stability differences in unhopped and hopped all-malt Pilsner beers brewed with proanthocyanidin-free and with regular malt. J. Inst. Brew. 90: 67 (1984).Google Scholar
  6. 6.
    Kumar, R.; Singh, M. Tannins: their adverse role in ruminant nutrition. J. Agric. Food. Chem. 32: 447 (1984).CrossRefGoogle Scholar
  7. 7.
    Butler, L.G.; Riedl, D.J.; Lebryk, D.G.; Blytt, H.J. Interaction of proteins with sorghum tannin: mechanism, specificity and significance. J. Am. Oil Chem. Soc. 61: 916 (1984).CrossRefGoogle Scholar
  8. 8.
    Klocke, J.A.; Chan, B.C. Effects of cotton condensed tannin on feeding and digestion in the cotton pest Heliothis zea. J. Insect Physiol. 28: 911 (1982).CrossRefGoogle Scholar
  9. 9.
    Zucker, W.V. Tannins: does structure determine function? An ecological perspective. Am. Nat. 121: 335 (1983).CrossRefGoogle Scholar
  10. 10.
    Hemingway, R.W. Bark: its chemistry and prospects for chemical utilization. In: Goldestein, I.S. (ed.) Organic Chemicals from Biomass, CRC Press, Boca Raton, Florida pp. 189–248 (1981).Google Scholar
  11. 11.
    Pizzi, A. Tannin-based wood adhesives. In: Pizzi, A. (ed.) Wood Adhesives, Chemistry and Technology, Marcel Dekker, New York, pp. 177–246 (1983).Google Scholar
  12. 12.
    Hemingway, R.W.; Laks, P.E.; McGraw, G.W.; Kreibich, R.E. Reactions of condensed tannins and the development of tannin-based adhesives. In: Proceedings IUFRO Conference, Forest Products Research International - Achievements and the Future, Vol. 6, Pretoria, South Africa, pp. 17.11–17. 20 (1985).Google Scholar
  13. 13.
    Price, M.L.; Van Scoyoc, S.; Butler, L.G. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 26: 1214 (1978).CrossRefGoogle Scholar
  14. 14.
    Price, M.L.; Butler, L.G. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J. Agric. Food Chem. 25: 1268 (1977).CrossRefGoogle Scholar
  15. 15.
    Hagerman, A.E.; Butler, L.G. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 26: 809 (1978).CrossRefGoogle Scholar
  16. 16.
    Hagerman, A.E.; Butler, L.G. Condensed tannin purification and characterization of tannin-associated proteins. J. Agric. Food Chem. 28: 947 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    Bate-Smith, E.C. Hemanalysis of tannins. Concept of relative astringency. Phytochemistry 12: 907 (1973).CrossRefGoogle Scholar
  18. 18.
    Haslam, E. Polyphenol-protein interactions. Biochem. J. 139: 285 (1974).PubMedGoogle Scholar
  19. 19.
    Maxson, E.D.; Rooney, L.W. Evaluation of methods for tannin analysis in sorghum grain. J. Cereal Chem. 49: 719 (1972).Google Scholar
  20. 20.
    Weinges, K.; Kaltenhauser, W.; Marx, H.-D.; Nadar, E.; Nader, F.; Perrier, J.; Seiler, D. Proanthocyanidins. X. Procyanidins from fruit. Justus Leibigs Ann. Chem. 711: 184 (1968).Google Scholar
  21. 21.
    Mabry, T.J.; Markham, K.R. Mass spectrometry of flavonoids. In: Ilarborne, J.B.; Mabry, T.J.; Mabry, H. (eds.) The Flavonoids, Academic Press, New York (1975).Google Scholar
  22. 22.
    Mabry, T.J.; Ulubelen, A. Mass spectrometry of flavonoids and related plant phenolics. In: Waller, G.R.; Dermer, O.C. (eds.) Biochemical Applications of Mass Spectrometry, 1st Suppl. Vol. Wiley, New York (1980).Google Scholar
  23. 23.
    Ozawa, T.; Kobayashi, S.; Seki, R.; Imagawa, H. A new gallotannin from bark of chesnut tree Castanea crenata Sieb. et Zucc. Agric. Biol. Chem. 48: 1411 (1984).CrossRefGoogle Scholar
  24. 24.
    Piretti, M.V.; Pistore, R.; Razzoboni, C. On the chemical constitution of kaki tannin. Ann. Chim. 75: 137 (1985).Google Scholar
  25. 25.
    Kingston, D.G.I.; Fales, H.M. Methane chemical ionization mass spectrometry of flavonoids. Tetrahedron 29: 4083 (1973).CrossRefGoogle Scholar
  26. 26.
    Itokawa, H.; Oshida, Y.; Ikuta, A.; Shida, Y. In-beam electron impact, chemical ionization and negative ion chemical ionization of flavonoid glycosides. Chem. Lett.: 49 (1982).Google Scholar
  27. 27.
    Bankova, V.S.; Mollova, N.N.; Popov, S.S. Chemical ionization mass spectrometry with amines as reactant gases. Org . Mass Spectrom. 21: 109 (1986).Google Scholar
  28. 28.
    Karchesy, J.J.; Laver, M.L.; Barofsky, D.F.; Barofsky, E. Structure of oregonin, a natural diarylheptanoid xyloside. J. Chem. Soc. Chem. Common.: 649 (1974).Google Scholar
  29. 29.
    Schulten, H.R.; Games, D.E. High resolution field desorption mass spectrometry. II. Glycosides. Biomed. Mass Spectrom. 1: 120 (1974).PubMedCrossRefGoogle Scholar
  30. 30.
    Karchesy, J.J.; Loveland, P.M.; Laver, M.L.; Barofsky, D.F., Barofsky, E. Condensed tannins from the barks of Aines rubra and Pseudotsuga menzies II. Phytochemistry 15: 2009 (1976).Google Scholar
  31. 31.
    Biswas, K.M.; Ali, M.E.; Jackson, A.H.; Games, D.E. Application of field desorption and electron impact mass spectrometry and NMR spectroscopy in the study of flavonoid O-glycosides. J. Ind. Chem. Soc. 55: 1240 (1978).Google Scholar
  32. 32.
    Geiger, H.; Schwinger, G. Field desorption mass spectrometery and thermal fragmentation of flavonoid glucosides. Phytochemistry 19: 897 (1980).CrossRefGoogle Scholar
  33. 33.
    Nonaka, G.-I.; Morimoto, S.; Nishioka, I. Tannins and related compounds. Part 13. Isolation and structure of trimeric, tetrameric and pentameric proanthocyanidins from cinnamen. J. Chem. Soc. Perkin Trans. 1.: 2139 (1983).Google Scholar
  34. 34.
    Foo, L.Y.; Porter, L.J. Prodelphinidin polymers: definition of structural units. J. Chem. Soc. Perkin Trans. 1: 1186 (1978).CrossRefGoogle Scholar
  35. 35.
    Foo, L.Y.; Hemingway, R.W. Condensed tannins: synthesis of the first branched procyanidin trimer. J. Chem. Soc. Chem. Commun.: 85 (1984).Google Scholar
  36. 36.
    Yoshida, T.; Hatano, T.; Okudo, T.; Memon, M.; Shingu, T.; Inoue, K. Spectral and chromatographic analyses of tannins. I. Carbon-13 nuclear magnetic resonance spectra of hydrolyzable tannins. Chem. Pharm. Bull. 32: 1790 (1984).CrossRefGoogle Scholar
  37. 37.
    Nonaka, G.-I.; Kawahara, O., Nishioka, I. Tannins and related compounds. XV. A new class of dimeric flavan-3-ol gallates from green tea leaf. Chem. Pharm. Bull. 31: 3906 (1983).CrossRefGoogle Scholar
  38. 38.
    Beart, J.E.; Lilley, T.H.; Haslam, E. Plant polyphenols - secondary metablolism and chemical defense: some observations. Phytochemistry 24: 33 (1985).CrossRefGoogle Scholar
  39. 39.
    Surman, D.J.; Vickerman, J.C. Fast atom bombardment quadrapole mass spectrometry. J. Chem. Soc. Chem. Commun.: 324 (1981).Google Scholar
  40. 40.
    Barber, M.; Bordoli, R.S.; Sedgwick, R.D.; Tyler, A.N. Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry. J. Chem. Soc. Chem. Commun.: 325 (1981).Google Scholar
  41. 41.
    Burlingame, A.L.; Baillie, T.A.; Derrick, P.J. Mass spectrometry. Anal. Chem. 58: 165R (1986).Google Scholar
  42. 42.
    Day, R.J.; Unger, S.E.; Cooks, R.G. Molecular secondary ion mass spectrometry. Anal. Chem. 52: 557A (1980).Google Scholar
  43. 43.
    Williams, D.H.; Findeis, A.F.; Naylor, S.; Gibson, B.W. Aspects of the production of FAB and SIMS mass spectra. J. Am. Chem. Soc. 109: 1980 (1987).CrossRefGoogle Scholar
  44. 44.
    Pachuta, S.J.; Cooks, R.G. Mechanisms in molecular SIMS. Chem. Rev. 87: 647 (1987).CrossRefGoogle Scholar
  45. 45.
    Williams, D.H.; Smith, R.J.; Santikarn, S.; Maggio, J.E.; Daley, D.J.; Bradley, C.V. FAB mass spectrometry of some biopolymers. Spectros. Int. J. 2: 232 (1983).Google Scholar
  46. 46.
    Fenseleau, C.; Cotter, R.J. Chemical aspects of fast atom bombardment. Chem. Rev. 87: 501 (1987).CrossRefGoogle Scholar
  47. 47.
    Aberth, W.; Straub, K.M.; Burlingame, A.L. Secondary ion mass spectrometry with cesium ion primary beam and liquid target matrix for analysis of bioorganic compounds. Anal. Chem. 54: 2029 (1982).CrossRefGoogle Scholar
  48. 48.
    DePauw, E. Liquid matrices for secondary-ion mass spectrometry. Mass Spectrom. Rev. 5: 191 (1986).CrossRefGoogle Scholar
  49. 49.
    Carr, S.A.; Reinhold, V.N.; Green, B.N.; Hass, J.R. Enhancement of structural information in FAB ionized carbohydrate samples by neutral gas collision. Biomed. Mass Spectrom., 12: 288 (1985).PubMedCrossRefGoogle Scholar
  50. 50.
    Barber, M.; Bordoli, R.S.; Elliott, G.J.; Tyler, A.N.; Bill, J.C.; Green, B.N. Fast atom bombardment (FAB) mass spectrometry: a mass spectal investigation of some of the insulins. Biomed. Mass Spectrom. 11: 182 (1984).PubMedCrossRefGoogle Scholar
  51. 51.
    Martin, S.A.; Costello, C.E.; Biemann, K. Optimization of experimental procedures for fast atom bombardment mass spectrometery. Anal. Chem. 54: 2362 (1982).CrossRefGoogle Scholar
  52. 52.
    Barber, M.; Bordoli, R.S.; Elliott, G.J.; Sedgwick, R.D.; Tyler, A.N. Fast atom baombardment mass spectrometry. Anal. Chem. 59: 645A (1982).Google Scholar
  53. 53.
    Fenselau, C. Fast atom bombardment. In: Benninghoven, A. (ed.) Formation from Organic Solids, Springer-Verlag, Berlin (1983).Google Scholar
  54. 54.
    Rinehart, K.L. Fast atom bombardment mass spectrometry. Science 218: 254 (1982).PubMedCrossRefGoogle Scholar
  55. 55.
    Miller, J.M. Fast-atom bombardment mass spectrometry and related techniques. Adv. Inorg. Chem. Radiochem. 28: 1 (1984).CrossRefGoogle Scholar
  56. 56.
    Cochran, R.L. Fast atom bombardment/mass spectrometry (FAB/MS) and its industrial applications. Appl. Spectrosc. Rev. 22: 137 (1986).CrossRefGoogle Scholar
  57. 57.
    Domon, B.; Hostettman, K. Mass spectrometric studies of underivatized polyphenolic glycosides. Phytochemistry 24: 575 (1985).CrossRefGoogle Scholar
  58. 58.
    Karchesy, J.J.; Hemingway, R.W.; Foo, Y.L.; Barofsky, E.; Barofsky, D.F. Sequencing procyanidin oligomers by fast atom bombardment mass spectrometry. Anal. Chem. 58: 2563 (1986).CrossRefGoogle Scholar
  59. 59.
    Karchesy, J.J.; Foo, L.Y.; Barofsky, E.; Arbogast, B.; Barofsky, D.F. Negative ion fast atom bombardment mass spectrometry of procyanidin oligomers. Wood Chem. Technol. (in press).Google Scholar
  60. 60.
    de Koster, C.G.; Heerma, W.; Dijkstra, G.; Niemann, G.J. Fast atom bombardment of flavonols. Biomed. Mass Spectrom. 12: 596 (1985).CrossRefGoogle Scholar
  61. 61.
    Hsu, F.L.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XXXIII. Isolation and characterization of procyanidins in Dioscorea cirrhosa Lour. Chem. Phar. Bull. 33: 3293 (1985).CrossRefGoogle Scholar
  62. 62.
    Morimoto, S.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XXXXV. Procyanidins with a doubly linked unit from the root bark of Cinnamomum sieboldii Meisner. Chem. Pharm. Bull. 33: 4338 (1985).CrossRefGoogle Scholar
  63. 63.
    Morimota, S.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XXXVIII. Isolation and characterization of flavan-3-ol glucosides and procyanidin oligomers from cassia bark (Cinnamomum cassia Blume). Chem. Pharm. Bull. 34: 633 (1986).CrossRefGoogle Scholar
  64. 64.
    Morimoto, S.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XXXIX. Procyanidin c-glucosides and acylated flavan-3-ol glucoside from barks of Cinnamomum cassia Blume and C. obtusifolium Nees. Chem. Pharm. Bull. 34: 643 (1986).CrossRefGoogle Scholar
  65. 65.
    Kashiwada, Y.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XLV. Rhubarb. Isolation and characterization of flavan-3-ol and procyanidin glucosides. Chem. Phar. Bull. 34: 3208 (1986).CrossRefGoogle Scholar
  66. 66.
    Nonaka, G.; Morimoto, S.; Kinjo, J.; Nohara, T.; Nishioka, I. Tannins and related compounds. L. Structures of proanthocyanidin A-1 and related compounds. Chem. Pharm. Bull. 35: 149 (1987).CrossRefGoogle Scholar
  67. 67.
    Morimoto, S.; Nonaka, G.; Nishioka, I. Tannins and related compounds. LX. Isolation and characterization of proanthocyanidins with a doubly-linked unit from Vaccinium vitis-idaea L. Chem. Pharm. Bull. 36: 33 (1988).CrossRefGoogle Scholar
  68. 68.
    Gujer, R.; Magnolato, D.; Self, R. Glucosylated flavonoids and other phenolic compounds from sorghum. Phytochemistry 25: 1431 (1986).CrossRefGoogle Scholar
  69. 69.
    Galletti, G.C.; Self. R. The polyphenols (syn vegetable tannins) of grape skins and pressed fruit residues. Annali di Chimica 76: 195 (1986).Google Scholar
  70. 70.
    Self, R.; Eagles, J.; Galletti, G.C.; Mueller-Harvey, I.; Hartley, R.D.; Lea, A.G.H.; Magno-lato, D.; Richli, U.; Gujer, R.; Haslam, E. Fast atom bombardment mass spectrometry of polyphenols (syn. vegetable tannins). Biomed. Environ. Mass Spectrom. 13: 449 (1986).CrossRefGoogle Scholar
  71. 71.
    Karchesy, J.J.; Hemingway, R.W. Condensed tannins: 413 -+ 8:20–0 -* 7)-linked procyanidins in Arachis hypogea L. J. Agric. Food Chem. 34: 966 (1986).CrossRefGoogle Scholar
  72. 72.
    Yoshida, T.; Hatano, T.; Okuda, T.; Memon, M.V.; Shingu, T.; Inoue, K.; Fukushima, K. Nuclear magnetic resonance and mass spectral analyses of oligomeric hydrolyzable tannins and related tannins. Tenne Yuki Kagobutsu Toronkai Koen Yushishu 26: 158 (1983).Google Scholar
  73. 73.
    Sakushima, A.; Ilisada, S.; Nishibe, S.; Brandenberger, H. Application of fast atom bombardment mass spectrometry to chlorgenic acids. Phytochemistry 24: 325 (1985).CrossRefGoogle Scholar
  74. 74.
    Mueller-Harvey, I.; Hartley, R.D.; Harris, P.J.; Curzon, E.H. Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr. Res. 148: 71 (1986).CrossRefGoogle Scholar
  75. 75.
    Barber, M.; Green, B.N. The analysis of small proteins in the molecular weight range 10–24 kDa by magnetic sector mass spectrometry. Rapid Commun. Mass Spectrom. 1: 80 (1987).PubMedCrossRefGoogle Scholar
  76. 76.
    Craig, A. G.; Engstrom, A.; Bennich, H.; and Kamensky I. Enhancement of molecule ion yields in plasma desorption mass spectrometry. In: 35th ASMS Conference on Mass Spectrometry and Allied Topics. Denver, Colorado, (1987).Google Scholar
  77. 77.
    Foo, L.Y.; Karchesy, J.J.; Arbogast, B.A.; Barofsky, D.F. +FAB of a mixture of water soluble procyanidins from the inner bark of Douglas-fir/magic bullet/oligomers up to pentamer (m/z 1441), unpublished data (1988).Google Scholar
  78. 78.
    Porter, L.J. Condensed tannins, In:Rowe, J.W. (ed.) Natural Products Extraneous to the Lignocellulosic Cell Wall of Woody Plants. Springer-Verlag, New York, (in press).Google Scholar
  79. 79.
    Caprioli, R. Analysis of biochemical reactions with molecular specificity using fast atom bombardment mass spectrometry. Biochemistry 27: 513 (1988).PubMedCrossRefGoogle Scholar
  80. 80.
    McLafferty, F. W. (ed.) Tandem Mass Spectrometry. Wiley-Interscience, New York (1983).Google Scholar
  81. 81.
    Gross, M.L.; Jensen, N.J.; Lippstreu-Fisher, D.L.; Tomer, K.B. Tandem mass spectrometry and fourier transform mass spectrometry for analysis of biomolecules, In: Burlingame, A.L.; Castagnoli, N. Sr. (eds.) Mass Spectrometry in the Health and Life Sciences. Elsevier, New York (1985).Google Scholar
  82. 82.
    Pelter, A.; Stainton, P.; Johnson, A.P.; Barber, M. The mass spectra of oxygen heterocycles. I. The 4-hydroxy-3-phenylcoumarins (isoflavonols). J. Heterocyclic Chem. 2: 256 (1965).CrossRefGoogle Scholar
  83. 83.
    Pelter, A.; Staintor, P.; Barber, M. The mass spectra of oxygen heterocydes. II. The mass spectra of some flavonoids. J. Heterocyclic Chem. 2: 262 (1965).CrossRefGoogle Scholar
  84. 84.
    Watson, J.T. Introduction to Mass Spectrometry, Raven Press, New York (1985).Google Scholar
  85. 85.
    Thompson, R.S.; Jacques, D.; Haslam, E.; Tanner, R.J.N. Plant proanthocyanidins. I. Introduction, isolation, structure, and distribution in nature of plant procyanidins. J. Chem. Soc. Perkin Trans. 1: 1387 (1972).CrossRefGoogle Scholar
  86. 86.
    Jacques, D.; Haslam, E.; Bedford, G.R.; Greatbanks, D. Plant proanthocyanidins. II. Proanthocyanidin A2 and its derivatives. J. Chem. Soc. Perkin Trans. 1: 2663 (1974).CrossRefGoogle Scholar
  87. 87.
    Attwood, M.R.; Brown, B.R.; Lisseter, S.G.; Torrero, C.L.; Weaver, P.M. Spectral evidence for the formation of quinone methide intermediates from 5- and 7-hydroxyflavonoids. J. Chem. Soc. Chem. Commun.: 177 (1984).Google Scholar
  88. 88.
    Foo, L.Y.; Wong, H. Diastereoisomeric leucoanthocyanidins from the heartwood of Acacia melanoxylon. Phytochemistry 25: 1961 (1986).CrossRefGoogle Scholar
  89. 89.
    Laks, P.E.; Hemingway, R.W. Condensed tannins: base-catalyzed reactions of polymeric procyanidins with toluene-a-thiol. Stability of the interflavanoid bond and pyran ring. J. Chem. Soc. Perkin Trans. 1: 465 (1987).CrossRefGoogle Scholar
  90. 90.
    Hemingway, R.W.; Foo, L.Y. Condensed tannins: quinone methide intermediates in procyanidin synthesis. J. Chem. Soc. Chem. Commun.: 1035 (1983).Google Scholar
  91. 91.
    Delcour, J.A.; Tuytens, G.M. Structure elucidation of three dimeric proanthocyanidins isolated from a commercial Belgian pilsner beer. J. Inst. Brew. 90: 153 (1984).Google Scholar
  92. 92.
    Karchesy, J.J.; Foo, L.Y.; Hemingway, R.W.; Barofsky, E.; Barofsky, D.R. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives. Wood Fiber Sci. 21: 155 (1989).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Douglas F. Barofsky
    • 1
  1. 1.Department of Agricultural ChemistryOregon State UniversityCorvallisUSA

Personalised recommendations