Advertisement

New NMR Experiments Applicable to Structure and Conformation Analysis

  • Daneel Ferreira
  • E. Vincent Brandt

Abstract

Recent advances in the field of NMR spectroscopy have been primarily responsible for the rapid progress achieved in the study of proanthocyanidins over the past decade. This chapter summarizes these advances by describing how techniques including n.O.e. difference spectroscopy, homonuclear J-resolved and chemical shift correlation methods, and 13C- and heteronuclear experiments have been applied to analyses of some example proanthocyanidins. These NMR experiments have provided information regarding molecular structure, configuration, and conformation that was previously inaccessible or extremely difficult to obtain.

Keywords

Condensed Tannin Absolute Configuration Scalar Coupling Methoxy Proton Constituent Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Noggle, J.H.; Schirmer, R.E. The Nuclear Overhauser Effect. Academic Press, New York (1971).Google Scholar
  2. 2.
    Hall, L.D.; Saunders, J.M.K. Complete analysis of 1H-rim’. spectra of complex natural products using a combination of one-and two-dimensional techniques. 1. Dehydrotestosterone. J. Amer. Chem. Soc. 102: 5704 (1980).Google Scholar
  3. 3.
    Hull, W.E. Aspect 2000 Applications Note No. 1. Bruker Report 1: 4 (1978).Google Scholar
  4. 4.
    Chapman, E.G.; Abercrombie, D.B.; Carey, P.D.; Bradbury, E.M. The measurement of small nuclear Overhauser effects in the proton spectra of proteins and their application of lysozyme. J. Magn. Reson. 31: 459 (1978).Google Scholar
  5. 5.
    Jeener, J.; Meier, B.H.; Bachman, P.; Ernst, R.R. Investigation of exchange processes by two-dimensional nnir spectroscopy. J. Chem. Phys. 71: 4546 (1979).CrossRefGoogle Scholar
  6. 6.
    Young, E.; Brandt, E.V.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 17. Oligomeric (2R,3S)-3,3’,4’,7,8-pentahydroxyflavans: Atropisomerism and conformation of biphenyl and m-terphenyl analogues from Prosopis glandulosa (’Mesquite’). J. Chem. Soc., Perkin Trans. 1: 1737 (1986).Google Scholar
  7. Pelter, A.; Amenechi, P.I. Isoflavonoid and pterocarpinoid extractives of Lanchocarpus laxifiorus J. Chem. Soc. (C):887 (1969).Google Scholar
  8. 8.
    Pelter, A.; Amenechi, P.I.; Warren, R.; Harper, S.H. The structures of two proanthocyanidins from Julbernadia globifiora. J. Chem. Soc. (C): 2572 (1969).Google Scholar
  9. 9.
    Hundt, H.K.L.; Roux, D.G. Condensed tannins: Determination of the point of linkage in ‘terminal’ (+)-catechin units and degradative bromination of 4-flavanylflavan-3,4-diols. J. Chem. Soc., Chem. Commun.: 696 (1978).Google Scholar
  10. 10.
    Hundt H.K.L.; Roux, D.G. Synthesis of condensed tannins. Part 3. Chemical shifts for determining the 6- and 8- bonding positions of ‘terminal’ (+)-catechin units. J. Chem. Soc., Perkin Trans. 1: 1227 (1981).Google Scholar
  11. 11.
    Young, D.A.; Young, E.; Roux, D.G.; Brandt, E.V.; Ferreira, D. Synthesis of condensed tannins. Part 19. Phenol oxidative coupling of (+)-catechin and (+)-mesquitol. Conformation of bis-(+)-catechins. J. Chem. Soc., Perkin Trans. 1: 2345 (1987).Google Scholar
  12. 12.
    Brandt, E.V.; Young, D.A.; Young, E.; Ferreira, D. Absolute configuration of atropisomeric m-terphenyl-type flavan-3-ols. J. Chem. Soc., Perkin Trans. 1: 1365 (1987).CrossRefGoogle Scholar
  13. 13.
    Young, D.A.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 15. Structure of natural ‘angular’ profisetinidin tetraflavanoids: Asymmetric induction during oligomeric synthesis. J. Chem. Soc., Perkin Trans. 1: 2529 (1985).Google Scholar
  14. 14.
    Young, D.A.; Kolodziej, H.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 16. Stereochemical differentiation of the first ‘angular’ (2S,3R)-profisetinidin tetraffavanoids from Rhus lancea (Karree) and the varying dynamic behaviors of their derivatives. J. Chem. Soc., Perkin Trans. 1: 2537 (1985).Google Scholar
  15. 15.
    Brandt, E.V.; Young, D.A.; Kolodziej, H.; Ferreira, D.; Roux, D.G. Cycloconformations of two tetraflavanoid profisetinidin condensed tannins. J. Chem. Soc., Chem. Commun.: 913 (1986).Google Scholar
  16. 16.
    Brandt, E.V.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 20. Cycloconformations and conformational stability among derivatives of ‘angular’ tetraflavanoid profisetinidins. J. Chem. Soc., Perkin Trans. 1: 2353 (1987).Google Scholar
  17. 17.
    Young, D.A.; Ferreira, D.; Roux, D.G. Stereochemistry and dynamic behavior of some synthetic ‘angular’ profisetinidin tetraflavanoid derivatives. J. Polym. Sci., Polym. Chem. Ed. 24: 835 (1986).CrossRefGoogle Scholar
  18. 18.
    Steenkamp, J.A.; Steynberg, J.P.; Brandt, E.V.; Ferreira, D.; Roux, D.G. Phlobatannins, a novel class of ring-isomerized condensed tannins. J. Chem. Soc., Chem. Commun.: 1678 (1985).Google Scholar
  19. 19.
    Steynberg, J.P.; Young, D.A.; Burger, J.F.W.; Ferreira, D.; Roux, D.G. Phlobatannins via facile ring isomerizations of profisetinidin and prorobinetinidin condensed tannin units. J. Chem. Soc., Chem. Commun.: 1013 (1986).Google Scholar
  20. 20.
    Steynberg, J.P.; Burger, J.F.W.; Young, D.A.; Brandt, E.V. Steenkamp, J.A.; Ferreira, D. Oligomeric flavanoids. Part, 3. Structure and synthesis of phlobatannins related to (-)fisetinidol-(4ce,6) and (4a,8)-(+)-catediin profisetinidins. J. Chem. Soc., Perkin Trans. 1: 3323 (1988).Google Scholar
  21. 21.
    Steynberg, J.P.; Burger, J.F.W.; Young, D.A.; Brandt, E.V.; Steenkamp, J.A.; Ferreira, D. Novel base-catalysed rearrangements of (-)-fisetinidol-(+)-catechin profisetinidins with 2,3-trans-3,4-cis flavan-3-ol constituent units. J. Chem. Soc., Chem. Commun.: 1055 (1988).Google Scholar
  22. 22.
    Steynberg, J.P.; Burger, J.F.W.; Young, D.A.; Brandt, E.V.; Steenkamp, J.A.; Ferreira, D. Oligomeric flavanoids. Part 4. Base-catalysed conversions of (-)-fisetinidol-(+)-catechin profisetinidins with 2,3-trans-3,4-trans-flavan-3-ol constituent units. J. Chem. Soc., Perkin Trans. 1: 3331 (1988).Google Scholar
  23. 23.
    Burger, J.F.W.; Steynberg, J.P.; Young, D.A.; Brandt, E.V.; Ferreira, D. Oligomeric flavanoids. Part 5. Base-catalysed C-ring isomerization of (+)-fisetinidol-(+)-catechin profisetinidins. J. Chem. Soc., Perkin Trans. 1 8/02280A/P1P (1988).Google Scholar
  24. 24.
    Kessler, H.; Bermel, W.; Griesinger, C.; Kolar, C. The elucidation of the constitution of glycopeptides by the nmr spectroscopic COLOC technique. Angew. Chem. Int. Ed. Engl. 25: 342 (1986).CrossRefGoogle Scholar
  25. 25.
    Steynberg J.P.; Brandt E.V.; Burger J.F.W.; Bezuidenhoudt, B.C.B.; Ferreira, D. Stil-bene glycosides from Guibourtia coleosperma: determination of glycosidic connectivities by homonuclear nuclear Overhauser effect difference spectroscopy. J. Chem. Soc., Perkin Trans. 1: 37 (1988).Google Scholar
  26. 26.
    Bombardelli, E.; Martinelli, E.M.; Mustich, G. Plants of Mozambique IX. New hydroxystilbene glycoside form Terminalia sencea. Fitoterapia 46: 199 (1975).Google Scholar
  27. 27.
    Aue, W.P.; Karhan, J.; Ernst, R.R. Homonuclear broad band decoupling and two-dimensional J-resolved nmr spectroscopy. J. Chem. Phys. 64: 4226 (1976).CrossRefGoogle Scholar
  28. 28.
    Bax, A.D.; Two-dimensional Nuclear Magnetic Resonance in Liquids. Delft University Press, Holland p. 99 (1982).Google Scholar
  29. 29.
    Jencer, J. Ampere International Summer School, Basko Polje, Yugoslavia, (1981).Google Scholar
  30. 30.
    Aue, W.P.; Bartholdi, E.; Ernst, R.R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 64: 2229 (1976).CrossRefGoogle Scholar
  31. 31.
    Anderson, W.A.; Freeman, R. Influence of second radio-frequency field on high resolution nuclear magnetic resonance spectra. J. Chem. Phys. 37: 85 (1962).CrossRefGoogle Scholar
  32. 32.
    Bezuidenhoudt, B.C.B.; Brandt, E.V.; Roux, D.G. Synthesis of isoflavanoid oligomers using a pterocarpan as inceptive electrophile. J. Chem. Soc., Perkin Trans. 1: 2767 (1984).Google Scholar
  33. 33.
    Bezuidenhout, S.C.; Bezuidenhoudt, B.C.B.; Brandt, E.V.; Ferreira, D. Oligomeric isoflavonoids. Part 2. Structure and synthesis of xanthocercin A and B, the first isoflavono-lignoids. J. Chem. Soc., Perkin Trans. 1:1237 (1988).Google Scholar
  34. 34.
    Ternai, B.; Markham, K.R. Carbon-13 nmr studies of flavonoids. I. Flavones and flavonols. Tetrahedron 32: 565 (1976).CrossRefGoogle Scholar
  35. 35.
    Markham, K.R.; Ternai, B. 13C nmr of flavonoids. II. Flavonoids other than flavone and flavonol aglycones. Tetrahedron 32: 2607 (1976).CrossRefGoogle Scholar
  36. 36.
    Wagner, H.; Chari, V.M.; Sonnenbichler, J. 13C-nmr Spectren naturlich verkommender Flavonoide. Tetrahedron Letters 21: 1799 (1976).CrossRefGoogle Scholar
  37. 37.
    Kingsburg, C.A.; Looker, J.H. Carbon-13 spectra of methoxyflavones. J. Org . Chem. 40: 1120 (1975).Google Scholar
  38. 38.
    Joseph-Nathan, P.; Mares, J. Hernandez, Ma.C.; Schoolery, J.N. Proton and carbon-13 nuclear magnetic resonance studies of flavone and deuterated analogues. J. Magn. Reson. 16: 447 (1974).Google Scholar
  39. 39.
    Pelter, A.; Ward, R.S.; Gray, T.I. The carbon-13 nuclear magnetic resonance spectra of flavonoids and related compounds. J. Chem. Soc., Perkin Trans. 1: 2475 (1976).Google Scholar
  40. 40.
    Wherli, F.W. Proton coupled 13C nuclear magnetic resonate spectra involving 13C–1H spin-spin coupling to hydroxyl-protons, a complementary assignment aid. J. Chem. Soc., Chem. Commun.: 663 (1975).Google Scholar
  41. 41.
    Solaniova, E.; Toma, S.; Gronowitz, S. Investigation of substituent effects of chalcones by carbon-13 nmr spectroscopy. Org . Magn. Reson. 8: 439 (1976).Google Scholar
  42. 42.
    Chang, C. Carbon-13 proton long range couplings of phenols. Hydrogen bonding and stereospecificity. J. Org . Chem. 41: 1881 (1976).Google Scholar
  43. 43.
    Chari, V.M.; Ilyas, M.; Wagner, H.; Neszmelyi, A.; Chen, L.-K.; Lin, Y.-C.; Lin, Y.-M. 13C runr spectroscopy of biflavonoids. Phytochemistry 18: 1273 (1977).CrossRefGoogle Scholar
  44. 44.
    Chari, V.M.; Jordan, M.; Wagner, H.; Theis, P.W. A 13C-nmr study of the structure of an acyl-linarin from Valeriana wallichii. Phytochemistry 16: 1110 (1977).CrossRefGoogle Scholar
  45. 45.
    Karchesy, J.J.; Hemingway, R.W. Loblolly pine bark polyflavanoids. J. Agric. Food Chem. 28: 222 (1980).CrossRefGoogle Scholar
  46. 46.
    Czochawska, Z.; Foo, L.Y.; Newman, R.H.; Porter, L.J. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. J. Chem. Soc., Perkin Trans. 1: 2278 (1980).Google Scholar
  47. 47.
    Porter, L.J.; Newman, R.H.; Foo, L.Y.; Wong, H.; Hemingway, R.W. Polymeric proanthocyanidins. 13C nmr studies of procyanidins. J. Chem. Soc., Perkin Trans. 1: 1217 (1982).Google Scholar
  48. 48.
    Wenkert, E.; Buckwalter, B.L.; Burfitt, I.R.; Gasic, M.J.; Gottlieb, H.E.; Hagaman, E.W.; Schell, F.M.; Wovkulich, P.M.; Heleva, A.Z. In: Levy, G.C. (ed.) Topics in Carbon-13 NMR Spectroscopy. Wiley-Interscience, New York, II:2 (1976).Google Scholar
  49. 49.
    Philipsborn, W. von. Applications of double resonance and Fourier transform nmr spectroscopy in organic chemistry. Pure Appl. Chem. 40: 159 (1974).CrossRefGoogle Scholar
  50. 50.
    Chalmers, A.A.; Pachler, K.G.R.; Wessels, P.L. Difference selective population inversion spectra and their application to the study of carbon-13 - hydrogen coupling constants in 2,3-dibromothiophene. Org . Magn. Reson. 6: 445 (1974).Google Scholar
  51. 51.
    Morris, G.A.; Freeman, R. Enhancement of nuclear magnetic resonance signals by polarization transfer. J. Amer. Chem. Soc. 101: 760 (1979).CrossRefGoogle Scholar
  52. 52.
    Doddrell, D.M.; Pegg, D.T.; Bendall, M.R. Distortionless enhancement of nmr signals by polarization transfer. J. Magn. Reson. 48: 323 (1982).Google Scholar
  53. 53.
    Maudsley, A.A.; Ernst, R.R. Indirect detection of magnetic resonance by heteronuclear two-dimensional spectroscopy. Chem. Phys. Lett. 50: 368 (1977).CrossRefGoogle Scholar
  54. 54.
    Bodenhausen, G.; Freeman, R. Correlation of proton and carbon-13 nmr spectra by heteronuclear two-dimensional spectroscopy. J. Magn. Reson. 28: 471 (1977).Google Scholar
  55. 55.
    Maudsley, A.A.; Mueller L.; Ernst, R.R. Cross-correlation of spin-decoupled nmr spectra by heteronuclear two-dimensional spectroscopy. J. Magn. Reson. 28: 463 (1977).Google Scholar
  56. 56.
    Bax, A.; Morris, G. An improved method for heteronuclear chemical shift correlation by two-dimensional nmr. J. Magn. Reson. 42: 501 (1981).Google Scholar
  57. 57.
    Laks, P.E.; Hemingway, R.W.; Conner, A.H. Condensed tannins. Base-catalyzed reactions of polymeric procyanidins with phloroglucinol. Intramolecular rearrangements. J. Chem. Soc., Perkin Trans. 1: 1975 (1987).Google Scholar
  58. 58.
    Kalyanasundaram, K. Use of long range 1H–13C couplings in structure determination: shellatin, a novel dihydroisocoumarin from Aspergillus varicolor. J. Chem. Soc., Chem. Commun.: 628 (1978).Google Scholar
  59. 59.
    Arisawa, M.; Handa, S.S.; McPherson, D.D.; Laukin, D.C.; Cordell, G.A.; Wong, H.H.S.; Farnsworth, N.R. Plant anticancer agents. XXIX. Cleomiscosin A from Simaba multiflora, Soulanea soulameopides and Matayba arborescens. J. Nat. Prod. 47: 300 (1984).CrossRefGoogle Scholar
  60. 60.
    Ray, A.B. Chasttopadhyay, S.K.; Kumar, S.; Konno, C.; Kiso, Y.; Hinkino, H. Structures of cleomisconsias, coumarino-lignoids of Cleome miscosa seeds. Tetrahedron 41: 209 (1985).CrossRefGoogle Scholar
  61. 61.
    Kessler, H.; Griesinger, C.; Zarbock, J.; Loosli, H.R. Assignment of carbonyl carbons and sequence analysis in peptides by heteronudear shift correlation via small coupling constants with broadband decoupling in t1 (COLOC). J. Magn. Reson. 57: 331 (1984).Google Scholar
  62. 62.
    Bax, A. Structure determination and spectral assignment by pulsed polarization transfer via long-range proton-carbon-13 couplings. J. Magn. Reson. 57: 314 (1984).Google Scholar
  63. 63.
    Lin, L.-J.; Cordell, A. Applications of the SINEPT pulse progamme in the structure elucidation of coumarinolignans. J. Chem. Soc., Chem. Commun.: 377 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Daneel Ferreira
    • 1
  • E. Vincent Brandt
    • 1
  1. 1.Department of ChemistryUniversity of the Orange Free StateBloemfonteinSouth Africa

Personalised recommendations