Advertisement

Metabolic Activities in the Arterial Wall

  • Stewart Wolf
  • Nicholas T. Werthessen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 115)

Keywords

Smooth Muscle Cell Arterial Wall Oxygen Tension Collagen Synthesis Lactate Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Lehninger, A.L. Biochemistry. Worth Publishers, N.Y., 1970.Google Scholar
  2. 2.
    Scott, R.F., Morrison, E.S. and Kroms, M.: Effect of cold shock on respiration and glycolysis in swine arterial tissue. Am. J. Physiol. 219, 1363–1365, 1970.PubMedGoogle Scholar
  3. 3.
    Scott, R.F., Morrison, E.S., and Kroms, M.: Aortic respiration and glycolysis in the pre-proliferative phase of diet-induced atherosclerosis in swine. J. Atheroscler. Res. 9, 5–16, 1969.PubMedCrossRefGoogle Scholar
  4. 4.
    Morrison, E.S., Scott, R.F., Kroms, M., and Frick, J.: Glucose degradation in normal and atheroslerotic aortic intima-media. Atherosclerosis 16, 175–184, 1972.PubMedCrossRefGoogle Scholar
  5. 5.
    Morrison, A.D., Berwick, L., Orci, L., and Winegrad, A.I.: Morphology and metabolism of an aortic intima-media preparation in which an intact endothelium is preserved. J. Clin. Invest. 5, 650–660, 1976.CrossRefGoogle Scholar
  6. 6.
    Arnqvist, H.J. and Lundholm, L.: Influence of oxygen tension on the metabolism of vascular smooth muscle; demonstration of a Pasteur effect. Atherosclerosis 25, 245–253, 1976.PubMedCrossRefGoogle Scholar
  7. 7.
    Niinikoski, V., Heughan, C. and Hunt, T.K.: Oxygen tensions in the aortic wall of normal rabbits. Atherosclerosis 17, 353–359, 1973.PubMedCrossRefGoogle Scholar
  8. 8.
    Kirk, J.E. and Laursen, T.J.S.: Diffusion coefficients of various solutes for human aortic tissue, with special reference to variation in tissue permeability with age. J. Gerontol. 10, 288–302.Google Scholar
  9. 9.
    Hill, A.V.: The diffusion of oxygen and lactic acid through tissues. Proc. Roy. Soc. (London) Ser. B., 104, 39–96, 1928–29.Google Scholar
  10. 10.
    Moss, A.J., Samuelson, P., Angell, C. and Minken, S.L.: Polarographic evaluation of transmural oxygen availability in intact muscular arteries. J. Atheroscler. Res., 8, 803–810, 1968.PubMedCrossRefGoogle Scholar
  11. 11.
    Kjeldsen, K., Wanstrup, J. and Astrup, P.: Enhancing influence of arterial hypoxia on the development of atheromatosis in cholesterol-fed rabbits. J. Atheroscler. Res. 8, 835–845, 1968.PubMedCrossRefGoogle Scholar
  12. 12.
    Kjeldsen, K., Astrup, P., and Wanstrup, J.: Reversal of rabbit atheromatosis by hyperoxia. J. Atheroscler. Res., 10, 173–178, 1969.PubMedCrossRefGoogle Scholar
  13. 13.
    Vesselinovitch, D., and Wissler, R.W.: Experimental atherosclerosis in rabbits - the effect of oxygen and/or cholestyramine on its reversibility. Circ. 38, Suppl. VI, 198, 1968.Google Scholar
  14. 14.
    Vesselinovitch, D., Wissler, R.W., Dzoga, K., Hughes, R.H., and Dubien, L.: Regression of atherosclerosis in rabbits; Pt. 1, Treatment with low-fat, hyperoxia and hypolipidemic agents. Atheroclerosis 19, 259–275, 1974.CrossRefGoogle Scholar
  15. 15.
    Zemplenyi, T.: In: The Smooth Muscle of the Artery (Eds. S. Wolf & N.T. Werthessen). Advan. Exp. Med. Biol. 57, 302, 1975.Google Scholar
  16. 16.
    Peters, T.J.: Lysosomes of the cardiovascular system. Prog. in Cardiol. 4, 151–164, 1975.Google Scholar
  17. 17.
    Burleigh, M.C., Barrett, A.J. and Lazarus, G.S.: Cathepsin Bl: a lysosomal enzyme that degrades native Collagen. Biochem. J. 137, 387–398, 1974.PubMedGoogle Scholar
  18. 18.
    de Duve, C., and Wattiaux, R.: Functions of lysosomes. Ann. Rev. Physiol., 28, 435–492.Google Scholar
  19. 19.
    Brachfeld, N.: Maintenance of cell viability. Circ. Suppl. 4, Vols. 39–40, 202–214, 1969.Google Scholar
  20. 20.
    Robin, E.D., Wilson, R.J., and Bromberg, P.A.: Intracellular acid-base relations and intracellular buffers. Ann. N.Y. Acad. Sci. 92. 539–546, 1961.PubMedCrossRefGoogle Scholar
  21. 21.
    Reijngoud, D.J., and Tager, J.M.: Measurement of intralysosomal pH. Biochem. Biophys. Acta. 297, 174–178, 1973.CrossRefGoogle Scholar
  22. 22.
    Ravens, K.G. and Gudbjarnason, S.: Changes in the activities of lysosomal enzymes in infarcted canine heart muscle. Circl. Res. 24, 851–856, 1969.CrossRefGoogle Scholar
  23. 23.
    Ricciutti, M.A.: Myocardial lysosome stability in the early stages of acute ischaemic injury. Am. J. Cardiol. 30, 492–497, 1972.PubMedCrossRefGoogle Scholar
  24. 24.
    Ricciutti, M.A.: Lysosomes and myocardial cellular injury. Am. J. Cardiol. 30, 498–502, 1972.PubMedCrossRefGoogle Scholar
  25. 25.
    Welman, E.: Lysosomal changes during anoxia in guinea-pig heart. Biochem. Soc. Trans. 2, 746–748.Google Scholar
  26. 26.
    Stary, H.C.: Coronary artery fine structure in Rhesus monkeys: the early atherosclerotic lesion and its progression. Primates in Medicine 9, 359–395, 1976.PubMedGoogle Scholar
  27. 27.
    Whereat, A.F.: Atherosclerosis and metabolic disorder in the arterial wall. Exp. Mol. Path. 7, 233–247, 1967.CrossRefGoogle Scholar
  28. 28.
    Portman, O.W. and Illingworth, D.R.: Arterial metabolism in primates. Prim. Med. 9, 145–223.Google Scholar
  29. 29.
    St. Clair, R.W.: Metabolism of the arterial wall and atherosclerosis. Atherosclerosis Revs. 1, 61–117, 1976.Google Scholar
  30. 30.
    Haust, M.D.: The morphogenesis and fate of potential and early atherosclerotic lesions in man. Hum. Pathol. 2, 1–29, 1971.PubMedCrossRefGoogle Scholar
  31. 31.
    Smith, E.B. and Slater, R.S.: Lipids and low-density lipoproteins in intima in relation to its morphological characteristics. In: Atherogenesis: Initiating factors. Ciba Symp. No. 12 (NS) 39–52, 1973.Google Scholar
  32. 32.
    Smith, E.B. and Smith, R.H.: Early changes in aortic intima. Atherosclerosis Revs. 1, 119–136, 1976.Google Scholar
  33. 33.
    Smith, E.B.: Acid glycosaminoglycan, collagen and elastin content of normal artery, fatty streaks and plaques. In: Arterial Mesenchyme and Atherosclerosis (Eds. W.D. Wagner and T.B. Clarkson) Advan. Exper. Med. Biol. 43, 125–138, 1974.Google Scholar
  34. 34.
    Lindner, J.: Regressive und progressive arterielle Reaktionen bei Atherosklerose: 5. Veranderungen im extracellularen Kompartment. Verh. Dt. Ges. inn. Med. 78, 1166–1175, 1972.Google Scholar
  35. 35.
    Green, H. and Goldberg, B.: Collagen and cell protein synthesis by an established mammalian fibroblast line. Nature. 204, 347–349, 1964.PubMedCrossRefGoogle Scholar
  36. 36.
    Langness, U. and Udenfriend, S.: Collagen proline hydroxylase activity and anaerobic metabolism. In: Biology of fibroblast (E. Kulonen & J. Pikkarainen) Academic Press, 373–377, 1973.Google Scholar
  37. 37.
    Levene, C.I. and Bates, C.J.: The activation of protocollagen proline hydroxylase and its effect on collagen synthesis in culture 3T6 fibroblasts. Ital. J. Biochem. 24, 36, abs. 1975.Google Scholar
  38. 38.
    Schwarz R., Colarusso, L. and Doty, P.: Maintenance of differentiation in primary cultures of avian tendon cells. Exp. Cell Res. 102, 63–71, 1976.PubMedCrossRefGoogle Scholar
  39. 39.
    Chvapil, M., Hurych, J. and Mirejovska, E.: Effect of long-term hypoxia on protein synthesis in granuloma and in some organs in rats. Proc. Soc. Exp. Biol. Med. 135, 613–617, 1970.PubMedGoogle Scholar
  40. 40.
    Hunt, T.K. and Pai, M.P.: The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg. Gyn. Obs. 135, 561–567, 1972.Google Scholar
  41. 41.
    Bedford, J.S. and Mitchell, J.B.: The effect of hypoxia on the growth and radiation response of mammalian cells in culture. Brit. J. Radiol. 47, 687–606, 1974.PubMedCrossRefGoogle Scholar
  42. 42.
    Leung, D.Y.M., Glagov, S., Clark, J.M. and Mathews, M.B.: Mechanical influences on the biosynthesis of extracellular macromolecules by aortic cells. In: Extracullular Matrix Influences on Gene Expression. (Eds. H.C. Slavkin & R.C. Greulich). Academic Press 633–645, 1975.Google Scholar
  43. 43.
    Leung, D.Y.M., Glagov, S., and Mathews, M.B.: Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191, 475–477, 1976.PubMedCrossRefGoogle Scholar
  44. 44.
    Norby, D.P., Malemud, C.J. and Sokoloff, L.: Modulation of phenotypic expression of collagen synthesis by lapine articular chondrocytes in spinner and mono-layer cultures. Fed. Proc. 35, 714 (abs) 1976.Google Scholar
  45. 45.
    Wolinsky, H.: Effects of hypertension and its reversal on the thoracic aorta of male and female rats. Circulation Res. 28, 622–637, 1971.PubMedCrossRefGoogle Scholar
  46. 46.
    Wolinsky, H.: Long term effects on hypertension on the rat aortic wall and their relation to concurrent aging changes. Circulation Res. 30, 301–309, 1972.PubMedCrossRefGoogle Scholar
  47. 47.
    Hollander, W., Kramsch, D.M., Farmelant, M. and Madoff, I.M.: Arterial wall metabolism in experimental hypertension of coarctation of the aorta of short duration. J. Clin. Invest. 47, 1221–1229, 1968.PubMedCrossRefGoogle Scholar
  48. 48.
    Fernandez, D. and Crane, W.A.J.: New cell formation in rats with accelerated hypertension due to partial constriction. J. Path., 100, 307–316, 1970.PubMedCrossRefGoogle Scholar
  49. 49.
    Smith, E.B., Alexander, K.M. and Massie, I.B.: Insoluble “fibrin” in human aortic intima: quantitative studies on the relationship between insoluble “fibrin” soluble fibrinogen and low density lipoprotein. Atherosclerosis 23, 19–39, 1976.PubMedCrossRefGoogle Scholar
  50. 50.
    Smith, E.B. and Crothers, D.C.: Interaction between plasma proteins and the intercellular matrix in human aortic intima. Protides of the Biological Fluids, 22, 315–318, 1974.Google Scholar
  51. 51.
    Fisher-Dzoga, K., Chen, R. and Wissler, R.W.: Effect of serum lipoproteins on the morphology, growth and metabolism of arterial smooth muscle cells. Advan. Exp. Med. Biol., 43, 299–311, 1974.CrossRefGoogle Scholar
  52. 52.
    Ross, R.: The smooth muscle of the artery. Advan. Exp. Med. Biol. 57, 64–79, 1975.Google Scholar
  53. 53.
    Ronnemaa, J., Juva, K., and Kulonen, E.: Effect of hyperlipidemic rat serum on the synthesis of collagen by chick embryo fibroblasts. Atherosclerosis, 21, 315–324, 1975.PubMedCrossRefGoogle Scholar
  54. 54.
    Fuller, G.C., Miller, E., Farber, T. and Vanloon, E.: Aortic connective tissue changes in miniature pigs fed a lipid-rich diet. Connective Tiss. Res. 1, 217–220, 1972.CrossRefGoogle Scholar
  55. 55.
    St. Clair, R.W., Toma, J. J. and Lofland, H.B.: Proline hydroxylase activity and collagen content of pigeon aortas with naturally-occurring and cholesterol-aggravated atherosclerosis. Atherosclerosis, 21, 155–165, 1975.PubMedCrossRefGoogle Scholar
  56. 56.
    McCullagh, K.G. and Ehrhart, L.A.: Increased arterial collagen synthesis in experimental canine atherosclerosis Atherosclerosis, 19, 13–28, 1974.PubMedCrossRefGoogle Scholar
  57. 57.
    Smith, E.B., Massie, I.B. and Alexander, K.M.: The release of an immobilized lipoprotein fraction from atherosclerotic lesions by incubation with plasmin. Atherosclerosis, 25, 71–84, 1976.PubMedCrossRefGoogle Scholar
  58. 58.
    Smith, E.B.: Arterial wall and lipoproteins - steady state aspects. Proc. IV International Symposium on Atherosclerosis, Tokyo, 1976. In Press.Google Scholar
  59. 59.
    Camejo, G., Lopez, A., Vegas, H., and Paoli, H.: The participation of aortic proteins in the formation of complexes between low density lipoproteins and intima-media extracts. Atherosclerosis, 21, 77–91, 1975.PubMedCrossRefGoogle Scholar
  60. 60.
    Tracy, R.E., Dzoga, K., and Wissler, R.W.: Sequestration of serum low density lipoproteins in the arterial intima by complex formation. Proc. Soc. Exp. Biol. Med., 118, 1095–1098, 1965.PubMedGoogle Scholar
  61. 61.
    Bihari-Varga, M. and Vegh, M.: Quantitative studies on the complexes formed between aortic mucopolysaccharides and serum lipoproteins. Biochem. Biophys. Acta., 144, 202–210, 1967.PubMedCrossRefGoogle Scholar
  62. 62.
    Srinivasan, S.R., Dolan, P., Radhakrishnamurthy, B. and Berenson, G.S.: Isolation of lipoprotein-acid mucopolysaccharide complexes from fatty streaks of human aortas. Atherosclerosis, 16, 95–104, 1972.PubMedCrossRefGoogle Scholar
  63. 63.
    Anderson, A.J.: The formation of chondromucoproteinfibrinogen and chondromucoprotein-B-lipoprotein complexes. Biochem. J., 88, 460, 1963.PubMedGoogle Scholar
  64. 64.
    Benditt, E.P. and Benditt, J.M.: Evidence for a monoclonal origin of human atherosclerotic plaques. Proc. Nat. Acad. Sci. U.S.A., 70, 1753–1756, 1973.CrossRefGoogle Scholar
  65. 65.
    Panganamala, R.V., Geer, J.C., Sharman, H.M. and Cornwell, D.G.: The gross and histologic appearance and the lipid composition of normal intima and lesions from human coronary arteries and aorta. Atherosclerosis, 20, 93–104, 1974.PubMedCrossRefGoogle Scholar
  66. 66.
    Pearson, T.A., Wang, A., Solez, K. and Heptinstall, R.H.: Clonal characteristics of fibrous plaques and fatty streaks from human aortas. Am. J. Pathol., 81, 379–387, 1975.PubMedGoogle Scholar
  67. 67.
    Lee, K.T., Imai, H., Werthessen, N.T., and Taylor, C.B.: Necrogenic agent obtained from cholesterol used in dietary experiments. In: Atherosclerosis III (Eds. G. Schettler and A. Weizel ) 344–347, 1974.CrossRefGoogle Scholar
  68. 68.
    Florentine, R.A., Nam, S.C., Lee, K.T., Lee, K.J., and Thomas, W.A.: Increased mitotic activity in aortas of swine. Arch. Path., 88, 463–469, 1969.Google Scholar
  69. 69.
    Stary, H.C. and McMillan, G.C.: Kinetics of cellular proliferation in experimental atherosclerosis. Arch. Path., 89, 173–183, 1970.PubMedGoogle Scholar
  70. 70.
    Smith, E.B. and Massie, I.B.: Destruction of endogenous low density lipoprotein in incubated intima. Atherosclerosis. In press.Google Scholar
  71. 71.
    Miller, B.F. and Kothari, H.V.: Increased activity of lysosomal enzymes in human atherosclerotic aortas. Exp. Mol Path., 10, 288–294, 1969.CrossRefGoogle Scholar
  72. 72.
    Zemplenyi, T.: Vascular enzymes and the relevance of their study to problems of atherogenesis. Med. Clin. of North Amer., 58, (no.2), 293–321, 1974.Google Scholar
  73. 73.
    Oliver, M.F.: Dietary cholesterol, plasma cholesterol and coronary heart disease. Brit. Heart J., 38, 214–218, 1976.PubMedCrossRefGoogle Scholar
  74. 74.
    Day, A.J. and Proudlock, J.W.: Changes in aortic cholesterol-esterifying activity in rabbits fed cholesterol for 3 days. Atherosclerosis, 19, 253–258, 1974.PubMedCrossRefGoogle Scholar
  75. 75.
    Goldstein, J.L. and Brown, M.S.: Lipoprotein receptors, cholesterol and metabolism and atherosclerosis. Arch. Pathol., 99 181–184, 1975.PubMedGoogle Scholar
  76. 76.
    Weinstein, D.B., Carew, T.E. and Steinberg, D.: Uptake and degradation of low density lipoprotein by swine arterial smooth muscle cells with inhibition of cholesterol biosynthesis. Biochim. Biophys. Acta, 424, 404–421, 1976.PubMedCrossRefGoogle Scholar
  77. 77.
    Stein, Y., Glangeaud, M.C., Fainaru, M. and Stein, O.: The removal of cholesterol from aortic smooth muscle cells in culture and Landschutz ascites cells by fractions of human high density apolipoprotein.Google Scholar
  78. 78.
    Brown, M.S., Faust, J.R. and Goldstein, J.L.: Role of the low density lipoprotein receptors in regulating the content of free and esterified cholesterol in human fibroblasts. J. Clin. Invest., 55, 783–793, 1975.PubMedCrossRefGoogle Scholar
  79. 79.
    Werb, Z. and Cohn, Z.A.: Cholesterol metabolism in the macrophage, III. Ingestion and intracellular fate of cholesterol and cholesterol esters. J. Exp. Med., 135, 21–44, 1972.PubMedCrossRefGoogle Scholar
  80. 80.
    Holman, R.L.: Atherosclerosis–a pediatric nutrition problem? Am. J. Clin. Nutr., 9, 565–569, 1961.PubMedGoogle Scholar
  81. 81.
    Lee, V.A.: Individual trends in the total serum cholesterol of children and adolescents over a ten-year period. Am. J. Clin. Nutr., 20, 5–12, 1967.PubMedGoogle Scholar
  82. 82.
    Stetten, M.R.: Some aspects of metabolism of hydroxyproline, studied with aid of isotopic nitrogen. J. Biol. Chem. 181, 31, 1949.PubMedGoogle Scholar
  83. 83.
    Pearson, T.A., Wang, A., Solez, K., and Heptinstall, R.H.: Clonal characteristics of fibrous plaques and fatty streaks from human aortas. Am. J. Path. 81, 379–387, 1975.PubMedGoogle Scholar
  84. 84.
    Wolinsky, H., Glagov, S.: A lamellar unit of aortic medial structure and function in mammals. Circ. Res., 20: 99–111, 1967.PubMedCrossRefGoogle Scholar
  85. 85.
    Gospodarowicz, D., Moran, J.S.: Growth factors in mammalian cell culture. Ann. Rev. of Biochem. 45: 531, 1976.CrossRefGoogle Scholar
  86. 86.
    Ross, R., and Glomsett, J.A.: The pathogenesis of atherosclerosis. N. Eng. J. Med. 295–369, 1976.Google Scholar
  87. 87.
    Adams, C.W.M. and Bayliss, O.B.: The relationship between diffuse intimal thickening, medial enzyme failure and intimal lipid deposit in various human arteries. J. Athero. Res., 10: 327, 1969.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Stewart Wolf
    • 1
  • Nicholas T. Werthessen
    • 2
  1. 1.St. Luke’s HospitalBethlehemUSA
  2. 2.The Office of Naval ResearchBostonUSA

Personalised recommendations