Control of Vasomotor Function and the Hemodynamic Consequences of the Contractile Behavior of Arteries

  • Stewart Wolf
  • Nicholas T. Werthessen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 115)

Keywords

Fatigue Neurol Cyanide Macromolecule Catecholamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Gow, B.S.: The influence of vascular smooth muscle on the viscoelastic properties of blood vessels. Cardiovascular Fluid Dynamics. D.H. Berge (Ed.) Vol. II. London and New York Academic Press, pp. 65–110, 1972.Google Scholar
  2. 2.
    Furchgott, R.F.: The pharmacology of vascular smooth muscle. Pharmacol. Rev. 7: 183–265, 1955.PubMedGoogle Scholar
  3. 3.
    Wissler, R.W.: The arterial medial cell, smooth muscle or multifunctional mesenchyme? J. Atheroscler. Res. 8: 201–213, 1968.CrossRefGoogle Scholar
  4. 4.
    Aars, H.: Effects of altered smooth muscle tone on aortic diameter and aortic baroreceptor activity in anesthetized rabbits. Circ. Res. 28: 254–262, 1971.PubMedCrossRefGoogle Scholar
  5. 5.
    Cox, R.H.: Determinants of systemic hydraulic power in unanesthetized dogs. Am. J. Physiol. 226: 579–587, 1974.PubMedGoogle Scholar
  6. 6.
    Pagani, M., Schwartz, P.J., Bishop, V.S. and Malliani, A.: Reflex sympathetic changes in aortic diastolic pressure-diameter relationship. Am. J. Physiol. 229: 286–290, 1975.PubMedGoogle Scholar
  7. 7.
    Roach, M.R. and Burton, A.C.: The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35: 681–690, 1957.PubMedCrossRefGoogle Scholar
  8. 8.
    Wolinsky, H. and Glagov, S.: Structural basis for the static mechanical properties of the aortic media. Circ. Res. 14: 400–413, 1964.PubMedCrossRefGoogle Scholar
  9. 9.
    Apter, J.T.: Correlation of viscoelastic properties with microscopic structure of large arteries. Circ. Res. 21: 901–918, 1967.PubMedCrossRefGoogle Scholar
  10. 10.
    Fischer, G.M. and Llaurado, J.G.: Collagen and elastin content in canine arteries selected from functionally different vascular beds. Circ. Res. 19: 394–399, 1966.PubMedCrossRefGoogle Scholar
  11. 11.
    Harkness, M.L.R., Harkness, R.D. and McDonald, D.A.: The collagen and elastin content of the arterial wall in the dog. Proc. Roy. Soc. London, Series B. 146: 541–551, 1957.CrossRefGoogle Scholar
  12. 12.
    Benninghoff, A.: Blutgefasse und Herz. In: Handbuch der mikroskopischen Anatome. Berlin, Springer-Verlag. Vol. VI., pp. 1–225, 1930.Google Scholar
  13. 13.
    Cox, R.H.: Anisotropic properties of the canine carotid artery in vitro. J. Biomechanics 8: 293–300, 1975.CrossRefGoogle Scholar
  14. 14.
    Bergel, D.H.: The dynamic elastic properties of the arterial wall. J. Physiol. 156: 458–469, 1961.PubMedGoogle Scholar
  15. 15.
    Siegman, M.J., Butler, T.M., Mooers, S.U. and Davies, R.E.: Crossbridge attachment, resistance to stretch, and viscoelasticity in resting mammalian smooth muscle. Science 191: 383–385, 1976.PubMedCrossRefGoogle Scholar
  16. 16.
    Dobrin, P.B. and Rovick, A.A.: Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am. J. Physiol. 217: 1644–1651, 1969.PubMedGoogle Scholar
  17. 17.
    Gore, R.W.: Wall stress: a determinant of regional differences in response of frog microvessels to norepinephrine. Am. J. Physiol. 222: 82–91, 1972.PubMedGoogle Scholar
  18. 18.
    Speden, R.N.: Muscle load and constriction of the rabbit ear artery. Am. J. Physiol. 248: 531–533Google Scholar
  19. 19.
    Dobrin, P.B.: Isometric and isobaric contraction of carotid arterial smooth muscle. Am. J. Physiol. 214: 561–565, 1968.Google Scholar
  20. 20.
    Cox, R.H.: Mechanics of canine iliac artery smooth muscle in vitro. Am. J. Physiol. 230: 462–470, 1976.PubMedGoogle Scholar
  21. 21.
    Herlihy, J.T. and Murphy, R.A.: Length-tension relationship of smooth muscle of the hog carotid artery. Circ. Res. 33: 275–283, 1973.PubMedCrossRefGoogle Scholar
  22. 22.
    Furness, J.B. and Marshall, J.M.: Correlation of the directly observed responses of mesenteric vessels of the rat to nerve stimulation and noradrenaline with the distribtuion of adrenergic nerves. J. Physiol. 239: 75–88, 1974.PubMedGoogle Scholar
  23. 23.
    Davis, D.L. and Dow, P.: Intraluminal pressures and rate and magnitude of arterial constrictor responses. Am. J. Physiol. 227: 1149–1157, 1974.PubMedGoogle Scholar
  24. 24.
    Davis, D.L. and Baker, C.H.: Arterial segment constriction under constant-pressure and constant in-flow perfusion. Am. J. Physiol. 227: 1149–1157, 1974.PubMedGoogle Scholar
  25. 25.
    Abboud, F.M.: Control of the various components of the peripheral vasculature. Fed. Proc. 31: 1126–1239, 1972.Google Scholar
  26. 26.
    Gow, B.S.: Viscoelastic properties of conduit arteries. Circ. Res. 26 and 27, Suppl. II:1I-113-II-122, 1970.Google Scholar
  27. 27.
    Cox, R.H.: Pressure dependence of the mechanical properties of arteries in vivo. Am. J. Physiol. 229: 1371–1375, 1975.PubMedGoogle Scholar
  28. 28.
    Shepard, J.T.: Intrathoracic baroreflexes. Mayo Clin. Proc. 48: 426–437, 1973.Google Scholar
  29. 29.
    Koushanpour, E. and Kelso, D.M.: Partition of the carotid sinus baroreceptor response in dogs between the mechanical properties of the wall and the receptor elements. Circ. Res. 31: 831–845, 1972.PubMedCrossRefGoogle Scholar
  30. 30.
    Pelletier, C.L., Clement, D.L. and Shepard, J.T.: Comparison of afferent activity of canine aortic and sinus nerves. Circ. Res. 31: 557–568, 1972.PubMedCrossRefGoogle Scholar
  31. 31.
    Koushanpour, E. and Kelso, D.M.: Partition of the carotid sinus baroreceptor response in dogs between the mechanical properties of the wall and the receptor elements. Circ. Res. 31: 831–845, 1972.PubMedCrossRefGoogle Scholar
  32. 32.
    Koushanpour, E.: Quantitative analysis of whole nerve action potentials recorded from the carotid sinus baroreceptors. J. Electrophy. Tech. 3: 39–45, 1975.Google Scholar
  33. 33.
    Angell-James, J.E. and Daly, M. de B.: Comparison of the reflex vasomotor responses to separate and combined stimulation of the carotid sinus and aortic arch baroreceptors by pulsatile and non-pulsatile pressures in the dog. J. Physiol. 209: 257–293, 1970.Google Scholar
  34. 34.
    Ninomiya, I. and Irisawa, H.: Aortic nervous activities in response to pulsatile and nonpulsatile pressure. Am. J. Physiol. 213: 1504–1511, 1967.PubMedGoogle Scholar
  35. 35.
    Bagshaw, R.J.: Pressure dependence of the carotid sinus elastic modulus in the dog. M.I.T. J. Life Sci. 5: 43–48, 1975.Google Scholar
  36. 36.
    Bagshaw, R.J. and Peterson, L.H.: Sympathetic control of the mechanical properties of the canine carotid sinus. Am. J. Physiol. 222: 1462–1468, 1972.PubMedGoogle Scholar
  37. 37.
    Alarcon, J.E., Campbell, K.B. and Peterson, L.H.: Effect of norepinephrine on the carotid sinus. The Physiologist 17: 171, 1974.Google Scholar
  38. 38.
    Wurster, R.D. and Trobiani, S.: Effects of cervical sympathetic stimulation on carotid occlusion reflexes in cats. Am. J. Physiol. 225: 978–981, 1973.PubMedGoogle Scholar
  39. 39.
    Cox, R.H., Bagshaw, R.J., Detweiler, D.K and Peterson, L.H.: Effects of aging on the carotid sinus control of canine arterial hemodynamcis. IRCS Med. Sci. 3: 293, 1975.Google Scholar
  40. 40.
    Vatner, S.F., Franklin D., Van Citters, R.L. and Braunwald, E.: Effects of carotid sinus nerve stimulation on blood-flow distribution in conscious dogs at rest and during exercise. Circ. Res. 27: 495–503, 1970.PubMedCrossRefGoogle Scholar
  41. 41.
    Bjurstedt, H., Rosenhamer, G. and Tyden, G.: Cardiovascular responses to changes in carotid sinus transmural pressure in man. Acta Physiol. Scand. 9: 497–505, 1975.CrossRefGoogle Scholar
  42. 42.
    Moissejeff, E.: Zur Kenntnis des Carotissinus-reflexus. Z. Ges. Exptl. Med. 53: 696–704, 1926.CrossRefGoogle Scholar
  43. 43.
    Angell-James, J.E. and Daly, M. de B.: Effects of graded pulsatile pressure on the reflex vasomotor responses elicited by changes of mean pressure in the perfused carotid sinus-aortic arch regions of the dog. J. Physiol. 214: 51–64, 1971.PubMedGoogle Scholar
  44. 44.
    Schmidt, R.M., Kumada, M. and Sagawa, K.: Cardiac output and total peripheral resistance in carotid sinus reflex. Am. J. Physiol. 221: 480–487, 1971.PubMedGoogle Scholar
  45. 45.
    Cox, R.H. and Bagshaw, R.J.: Baroreceptor reflex control of arterial hemodynamcis in the dog. Circ. Res. 37: 772–786, 1975.PubMedCrossRefGoogle Scholar
  46. 46.
    Bond, R.F. and Green, H.D.: Cardiac output redistribution during bilateral common carotid occlusion. Am. J. Physiol. 216: 393–403Google Scholar
  47. 47.
    O’Rourke, M.F. and Taylor, M.G.: Vascular impedance of the femoral bed. Circ. Res. 18: 126–139, 1966.CrossRefGoogle Scholar
  48. 48.
    Taylor, M.G.: The input impedance of an assembly of randomly branching elastic tubes. Biophysical J. 6: 29–51, 1966.CrossRefGoogle Scholar
  49. 49.
    Levy, M.N., NG, M.L. and Zieske, H.: Cardiac and respiratory effects of aortic arch baroreceptor stimulation. Circ. Res. 19: 930–939, 1966.PubMedCrossRefGoogle Scholar
  50. 50.
    Hainsworth, R., Ledsome, J.R. and Carswell, F.: Reflex responses from aortic baroreceptors. Am. J. Physiol. 218: 423–429, 1970.PubMedGoogle Scholar
  51. 51.
    Pelletier, C.L., Edis, A.J. and Shepard, J.T.: Circulatory reflex from vagal afferents in response to hemorrhage in the dog. Circ. Res. 29: 626–634, 1971.PubMedCrossRefGoogle Scholar
  52. 52.
    Ott, N.T. and Shepherd, J.T.: Modifications of the aortic and vagal depressor reflexes by hypercapnia in the rabbit. Circ. Res. 33: 160–165, 1973.PubMedCrossRefGoogle Scholar
  53. 53.
    Pelletier, C.L. and Shepherd, J.T.: Effect of hypoxia on vascular responses to the carotid baroreflex. Am. J. Physiol. 228: 331–336, 1975.PubMedGoogle Scholar
  54. 54.
    Mancia, G.: Influence of carotid baroreceptors on vascular responses to carotid chemoreceptor stimulation in the dog. Circ. Res. 36: 270–276, 1975.PubMedCrossRefGoogle Scholar
  55. 55.
    Mancia, G., Shepherd, J.T. and Donald, D.E.: Role of cardiac, pulmonary, and carotid mechanoreceptors in the control of hind-limb and renal circulation in dogs. Circ. Res. 37: 200–208, 1975.PubMedCrossRefGoogle Scholar
  56. 56.
    Bagshaw, R.J., Lizuka, M. and Peterson, L.H.: Effect of interaction of the hypothalamus and the carotid sinus mechanoreceptor system on renal hemodynamics in the anesthetized dog. Circ. Res. 25: 569–585, 1972.Google Scholar
  57. 57.
    Kumada, M., Schramm, L.P., Altmansberger, R.A. and Sagawa, K.: Modulation of carotid sinus baroreceptor reflex by hypothalamic defense response. Am. J. Physiol. 228: 34–45, 1975.PubMedGoogle Scholar
  58. 58.
    Symth, H.S., Sleight, P. and Pickering, G.W.: Reflex regulation of arterial pressure during sleep in man: A quantitative method of assessing baroreflex sensitivity. Circ. Res. 24: 109–121, 1969.CrossRefGoogle Scholar
  59. 59.
    Bristow, J.D., Brown, E.B., Cunningham, D.J.C., Howson, M.G., Peterson, E.S., Pickering, T.G. and Sleight, P.: The effect of bicycling on the baroreflex regulation of pulse interval. Circ. Res. 28: 582–592, 1971.Google Scholar
  60. 60.
    Higgins, C.B., Vatner, S.F., Eckberg, D.L. and Braunwald, E.: Alterations in the baroreceptor reflex in conscious dogs with heart failure. J. Clin. Invest. 51: 715–724, 1972.PubMedCrossRefGoogle Scholar
  61. 61.
    Epstein, S.E., Beiser, G.D., Goldstein, R.E., Stampfer, M., Wechsler, A.S., Glick, G. and Braunwald, E.: Circulatory effects of electrical stimulation of the carotid sinus nerves in man. Circ. 40: 269–276, 1969.CrossRefGoogle Scholar
  62. 62.
    McCubbin, J.W., Green, J.H. and Page, I.H.: Baroreceptor function in chronic renal hypertension. Circ. Res. 4: 205–210, 1956.PubMedCrossRefGoogle Scholar
  63. 63.
    Angell-James, J.E.: Characteristics of single aortic and right subclavian baroreceptor fiber activity in rabbits with chronic renal hypertension. Circ. Res. 32: 149–161, 1974.CrossRefGoogle Scholar
  64. 64.
    Angell-James, J.E.: Arterial baroreceptor activity in rabbits with experimental atherosclerosis. Circ. Res. 34: 27–39, 1974.CrossRefGoogle Scholar
  65. 65.
    Angell-James, J.E.: Pathophysiology of aortic baroreceptors in rabbits with vitamin D sclerosis and hypertension. Circ. Res. 34: 327–338, 1974.PubMedCrossRefGoogle Scholar
  66. 66.
    Pickering, T.G., Gribbin, B.and Sleight, P.: Comparison of the reflex heart rate response to rising and falling arterial pressure in man, Cardiovascular Res. 6: 277–283, 1972.CrossRefGoogle Scholar
  67. 67.
    Rothbaum, D.A., Shaw, D.J., Angell, C.S. and Shock, N.W.: Age differences in the baroreceptor response of rats. J. Gerontology 29: 488–492, 1974.CrossRefGoogle Scholar
  68. 68.
    Cox, R.H., Fronek, A. and Peterson, L.H.: Effects of carotid hypotension on aortic hemodynamics in the unanesthetized dog. Am. J. Physiol. 229: 1376–1380, 1975.PubMedGoogle Scholar
  69. 69.
    Forsyth, R.P., Hoffbrand, B.K. and Melmon, K.L.: Hemodynamic effects of angiotensin in normal and environmentally stressed monkeys. Circ. 44: 119–129, 1971.CrossRefGoogle Scholar
  70. 70.
    Forsyth, R.P. and Harris, R.E.: Circulatory changes during stressful stimuli in rhesus monkeys. Circ. Res. 26 and 27 Suppl. 1:I-13-I-20, 1970.CrossRefGoogle Scholar
  71. 71.
    Caraffa-Braga, E., Granata, L. and Pinotti, O.: Changes in blood-flow distribution during acute emotional stress in dogs. Pflugers Arch. 339: 187–205, 1973.CrossRefGoogle Scholar
  72. 72.
    Fell, C.: Changes in blood flow distribution produced by central sciatic nerve stimulation. Am. J. Physiol. 214: 561–565, 1968.PubMedGoogle Scholar
  73. 73.
    Hoffband, B.I. and Forsyth, R.P.: Regional blood flow changes during norepinephrine, tyramine and methoxamine infusions in the unanesthetized rhesus monkey. J. Pharmacol. and Exp. Ther. 184: 656–661, 1973.Google Scholar
  74. 74.
    Vatner, S.F., Higgins, C.B., White, S., Patrick, T. and Franklin, D.: The peripheral vascular response to severe exercise in untethered dogs before and after complete heart block. J. Clin. Invest. 50: 1950–1960, 1971.PubMedCrossRefGoogle Scholar
  75. 75.
    Brod, J.: Essential hypertension haemodynamic observations with a bearing on its pathogenesis. The Lancet 2: 773–778, 1960.CrossRefGoogle Scholar
  76. 76.
    Kaihara, S., Rutherford, R.B., Schwentker, E.P. and Wagner, H.N., Jr.: Distribution of cardiac output in experimental hemorrhagic shock in dogs. J. Appl. Physiol. 27: 218–222, 1969.PubMedGoogle Scholar
  77. 77.
    Davis, J.O.: Viscoelastic properties of conduit arteries. Am. J. Med. 55: 333–350, 1973.CrossRefGoogle Scholar
  78. 78.
    Oparil, S. and Haber, E.: The renin-angiotensin system. New Eng. J. Med. 291: 389–401, 446–457, 1974.PubMedCrossRefGoogle Scholar
  79. 79.
    Forsythe, R.P., Hoffbrand, B.I. and Melmon, K.L: Hemodynamic effects of angiotensin in normal and environmentally stressed monkeys. Circ. 44: 119–129, 1971.CrossRefGoogle Scholar
  80. 80.
    Ganong, W.F.: Medical Physiology, 5th Ed., Lange Med. Publications, Los Altos, CaliforniaGoogle Scholar
  81. 81.
    Schmid, P.G., Abboud, F.M., Wendling, M.G., Ramberg, E.S., Mark, A.L., Heistad, D.D. and Eckstein, J.W.: Regional vascular effects of vasopressin: plasma levels and circulatory responses. Am. J. Physiol. 227: 998–1004, 1974.PubMedGoogle Scholar
  82. 82.
    Lutz, R.J., Cannon, J.N. and Monroe, R.E.: Shear stress measurements in model arteries during steady and pulsatile flow. Fluid Dynamic Aspects of Arterial Disease. Columbus, Ohio, State University Press, pp. 5–8, 1974.Google Scholar
  83. 83.
    Nerem, R.N., Rumberger, J.A., Jr., Gross, D.R., Hamlin, R.L. and Geiger, G.L.: Hot-film measurements of coronary blood flow in horses. Fluid Dynamic Aspects of Arterial Disease. Columbus, Ohio, State University Press, pp. 28–31, 1974.Google Scholar
  84. 84.
    Fry, D.L.: Responses of the arterial wall to certain physical factors. Atherogenesis: Initiating Factors. Ciba Foundation Symposium, Amsterdam, Associated Scientific Publishers. pp. 93–125, 1973.Google Scholar
  85. 85.
    Caro, C.G. and Nerem, R.M.: Transport of 14C-4-Cholesterol between serum and wall in the perfused dog common carotid artery. Circ. Res. 32: 187–205, 1973.PubMedCrossRefGoogle Scholar
  86. 86.
    Fry, D.L.: Certain chemorheologic considerations regarding the blood vascular interface with particular reference to coronary artery disease. Circ. 39 and 40, Suppl. 4:IV-38-IV-59, 1969.CrossRefGoogle Scholar
  87. 87.
    Nakata, Y., Shionoya, S., Matsubara, J. and Shinjo, K.: An experimental study on the vascular lesions caused by disturbance of the vasa vasorum and the periaortic vein. Jap. Circ. J. 36: 945–951, 1972.PubMedCrossRefGoogle Scholar
  88. 88.
    Glagov, S.: Mechanical stresses on vessels and the nonuniform distribution of atherosclerosis. Medical Clinics of North America. 57: 63–77, 1973.PubMedGoogle Scholar
  89. 89.
    Sacks, A.H.: The vasa vasorum as a link between hypertension and arteriosclerosis. Angiology 26: 385–390, 1975.CrossRefGoogle Scholar
  90. 90.
    Blose, S.H.: Contractile proteins and cytoplasmic filaments in cloned venous endothelial cells. Fed. Proc. 35: 234, 1976.Google Scholar
  91. 91.
    Shimamoto, T.: New concept of atherogenesis and treatment of atherosclerotic diseases with endothelial cell relaxant. Jap. Heart J. 13: 537–562, 1972.PubMedCrossRefGoogle Scholar
  92. 92.
    Robertson, A.L. and Khairallah, P.A.: Effects of angiotensin II and some analogues on vascular permeability in the rabbit. Circ. Res. 31: 923–931, 1972.PubMedCrossRefGoogle Scholar
  93. 93.
    Heath, D., Smith, P., Harris, P., and Winson, M.: The atherosclerotic human carotid sinus. J. Path. 110: 49–58, 1973.PubMedCrossRefGoogle Scholar
  94. 94.
    Winson, M., Heath, D. and Smith, P.: Extensibility of the human carotid sinus. Cardiovasc. Res. 8: 58–64, 1974.PubMedCrossRefGoogle Scholar
  95. 95.
    Cowley, A.W., Jr., Laird, J.F. and Guyton, A.C.: Role of the baroreceptors in daily control of arterial blood pressure and other variables in dogs. Circ. Res. 32: 564–576, 1973.PubMedCrossRefGoogle Scholar
  96. 96.
    Mancia, G., Ludbrook, J., Ferrari, A., Gregorini, L., Zahchetti, A.: Baroreceptor Reflexes in Human Hypertension. Circulation Res. 43: 170–177, 1978.PubMedCrossRefGoogle Scholar
  97. 97.
    Recordati, G., Lombardi, F., Bishop, V.S., Malliani A.: Response of type B atrial vagal receptors to changes in wall tension during atrial filling. Circulation Res. 36: 682–691, 1975.PubMedCrossRefGoogle Scholar
  98. 98.
    Recordati, G., Lombardi, F., Bishop, V.S., Malliani, A.: Mechanical stimuli exciting type A atrial receptors in the cat. Circulation Res. 38: 397–403, 1976.PubMedCrossRefGoogle Scholar
  99. 99.
    Armour, J.A.: Physiological behavior of thoracic cardiovascular receptors. Am. J. Physiol. 225: 177–185, 1973.PubMedGoogle Scholar
  100. 100.
    Guyton, A.C.: Textbook of Medical Physiology. W.B. Saunders, Philadelphia, PA, 5th Ed., 1976.Google Scholar
  101. 101.
    Dobrin, P.D. and Rovick, A.A.: Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am. J. Physiol. 217: 1644–1651, 1969.PubMedGoogle Scholar
  102. 102.
    McDonald, D.A.: Blood Flow in Arteries. William & Wilkins, Co., Baltimore Md., 2nd Ed., 1969.Google Scholar
  103. 103.
    Penfield, W.: Intracerebral vascular nerves. Arch. Neurol. Psychiat. (Chic). 27: 30–44, 1932.CrossRefGoogle Scholar
  104. 104.
    Chorobski, J. and Penfield, W.: Cerebral vasodilator nerves and their pathway from the medulla oblongata. With observations on the pial and intracerebral vascular plexus. Arch. Neural. Psychiat. 28: 1257–1289, 1932.CrossRefGoogle Scholar
  105. 105.
    Falck, B., Nielsen, K.C. and Owman, C.: Adrenergic innervation of the circulation. Scand. J. Clin. Lab. Invest. Suppl. 102, VI:B, 1968.Google Scholar
  106. 106.
    Nielsen, K.C., and Owman, C.: Adrenergic innervation of pial arteries related to the circle of Willis in the cat. Brain Research 6: 773–776, 1967.PubMedCrossRefGoogle Scholar
  107. 107.
    Hernandez-Perez, M.J. and Stone, H.L.: Sympathetic innervation of the circle of Willis in the macaque monkey. Brain Research 80: 507–511, 1974.PubMedCrossRefGoogle Scholar
  108. 108.
    Hartman, B.K.: Immunofluorescence of dopamine-betahydroxylase. Application of improved methodology to the localization of the peripheral and central noradrenergic nervous system. J. Histochem. Cytochem. 21: 312–332, 1973.PubMedCrossRefGoogle Scholar
  109. 109.
    Iwayama, T., Furness, J.B and Burnstock, G.: Dual adrenergic and cholinergic innervation of cerebral arteries of the rat. An ultrastructural study. Circ. Res. 26: 635–646, 1970.PubMedCrossRefGoogle Scholar
  110. 110.
    Forbes, H.S., Schmidt, C.F. and Nason, G.I.: Evidence of vasodilator innervation in the parietal cortex of the cat. Am. J. Physiol. 125: 216–219, 1939.Google Scholar
  111. 111.
    Denn, M.J. and Stone, H.L.: Cholinergic innervation of monkey cerebral vessels. Brain Research 113: 394–399, 1976.PubMedCrossRefGoogle Scholar
  112. 112.
    D’Alecy, L.G., and Feigl, E.O.: Sympathetic control of cerebral blood flow in dogs. Circ. Res. 31: 267–283, 1972.PubMedCrossRefGoogle Scholar
  113. 113.
    Hernandez-Perez, M.J., Raichle, M.J., Stone, H.L.: The role of the sympathetic nervous system in cerebral blood flow autoregulation. Stroke 6: 284–292, 1975.PubMedCrossRefGoogle Scholar
  114. 114.
    Stromberg, D.D. and Fox, J.R.: Pressures in the pial arterial microcirculation of the cat during changes in systemic arterial blood pressure. Circ. Res. 31: 229–239, 1972.PubMedCrossRefGoogle Scholar
  115. 115.
    Raichle, M.E. and Stone, H.L.: Cerebral blood flow autoregulation and graded hypercapnia. Proceedings of the 5th International Symposium on Cerebral Blood Flow Regulation (S. Karger) pp. 1–5, 1972.Google Scholar
  116. 116.
    Reivich, M.: Arterial pCO2 and cerebral hemodynamics. Am. J. Physiol. 206: 25–35, 1964.PubMedGoogle Scholar
  117. 117.
    Betz, E.: Cerebral blood flow: Its measurements and regulation. Physiol. Rev. 52: 595–630, 1972.PubMedGoogle Scholar
  118. 118.
    Stone, H.L., Raichle, M.E., Hernandez-Perez, M.J.: The effect of sympathetic denervation and cerebral CO2 sensitivity. Stroke 5: 13–18, 1974.PubMedCrossRefGoogle Scholar
  119. 119.
    McKee, J.C., Denn, M.J. and Stone, H.L.: Neurogenic cerebral vasodilation from electrical stimulation of the cerebellum in the monkey. Stroke 7: 179–186, 1976.PubMedCrossRefGoogle Scholar
  120. 120.
    Malliani, A., Parks, M., Tuckett, R.P., Brown, A.M.: Reflex increases in heart rate elicited by stimulation of afferent cardiac sympathetic nerve fibers in the cat. Circ. Res. 32: 9–14, 1973.PubMedGoogle Scholar
  121. 121.
    Denn, M.J. and Stone, H.L.: Autonomic innervation of dog coronary arteries. J. Appi. Physiol. 41: 30–35, 1976.Google Scholar
  122. 122.
    Berne, R.M.: Regulation of coronary blood flow. Phsyiol. Rev. 44: 1–29, 1964.Google Scholar
  123. 123.
    Feigl, E.O.: Sympathetic control of coronary circulation. Circ. Res. 20: 262–271, 1967.PubMedCrossRefGoogle Scholar
  124. 124.
    Feigl, E.O.: Parasympathetic control of coronary blood flow in dogs. Circ. Res. 25: 509–519, 1969.PubMedCrossRefGoogle Scholar
  125. 125.
    Olsson, R.A., Gregg, D.E.: Metabolic responses during myocardial reactive hyperemia in the unanesthetized dog. Am. J. Physiol. 208: 231–236, 1965.PubMedGoogle Scholar
  126. 126.
    Eikens, E., Wilcken, D.E.L.: Myocardial reactive hyperemia and coronary vascular reactivity in the dog. Circ. Res. 33: 267–274, 1973.PubMedCrossRefGoogle Scholar
  127. 127.
    Schwartz, P.J. and Stone, H.L.: Tonic influence of the sympathetic nervous system on myocardial reactive hyperemia and on coronary blood flow distribution in dogs. Circ. Res. 41: 51–58, 1977.PubMedCrossRefGoogle Scholar
  128. 128.
    Fortnun, N.J., Kaihara, S., Becker, L.C., Pitt, B.: Regional myocardial blood flow in the dog studied with radioactive microspheres. Cardio. Res. 5: 331–336, 1971.CrossRefGoogle Scholar
  129. 129.
    Malliani, A., Lombardi, F., Pagani, M., Recordati, G., and Schwartz, P.J.: Spinal cardiovascular reflexes. Brain Res. 87: 239–246, 1975.PubMedCrossRefGoogle Scholar
  130. 130.
    Burgess, P.R., and Perl, E.R.: Cutaneous mechanoreceptors and nociceptors. In: A. Iggo (Ed.), Handbook of Sensory Physiology, Vol. 2, Somatosenory System, Berlin, Springer-Verlag, pp. 851, 1973.Google Scholar
  131. 131.
    Malliani, A. and Pagani, M.: Afferent sympathetic nerve fibers with aortic endings. J. Physiol. 263: 157–169, 1976.PubMedGoogle Scholar
  132. 132.
    Lioy, F., Malliani, A., Pagani, M., Recordati, G., and Schwartz, P.J.: Reflex hemodynamic responses initiated from the thoracic aorta. Circ. Res. 34: 78–84, 1974.CrossRefGoogle Scholar
  133. 133.
    Malliani, A., Lombardi, F., Pagani, M., Recordati, G., and Schwartz, P.J.: Spinal sypathetic reflexes in the cat and the pathogenesis of arterial hypertension. Clin. Sci. Mol. Med. 48: 259s - 260s, 1975.Google Scholar
  134. 134.
    Pagani, M., Schwartz, P.J., Banks, R., Lombardi, F. and Malliani, A.: Reflex responses of sympathetic preganglionic neurones initiated by different cardiovascular receptors in spinal animals. Brain Res. 68: 215–225, 1974.PubMedCrossRefGoogle Scholar
  135. 135.
    Pagani, M., Schwartz, P.J., Bishop, V.S., and Malliani, A.: Reflex sympathetic changes in aortic diastolic pressure-diameter relationship. Am. J. Physiol. 229: 286–290, 1975.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Stewart Wolf
    • 1
  • Nicholas T. Werthessen
    • 2
  1. 1.St. Luke’s HospitalBethlehemUSA
  2. 2.The Office of Naval ResearchBostonUSA

Personalised recommendations