The Production of Echolocation Signals by Bats and Birds

  • Roderick A. Suthers
Part of the NATO ASI Science book series (NSSA, volume 156)


The mechanisms by which echolocating animals produce their sonar signals have generally received less attention than has the detection and processing of these signals by the auditory system. Since the transmitter and receiver are equal partners in the successful operation of a sonar system, we need to know more about how an animal controls the important information-bearing properties of its echolocative signal and about interactions between its vocal and auditory systems. This paper reviews recent developments in the laryngeal or syringeal physiology and vocal tract acoustics of echolocating bats and birds.


Laryngeal Nerve Vocal Tract Superior Laryngeal Nerve Helmholtz Resonator Inferior Laryngeal Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, Jw van den, 1956, Direct and indirect determination of the mean subglottic pressure, Folia Phoniatr. ( Basel ), 8: 1–24.CrossRefGoogle Scholar
  2. Brooke, R. K., 1972, Generic limits in old world Apodidae and Hirundinidae, Bull. Br. Ornithol. Club, 92: 52–57.Google Scholar
  3. Cavagna, G. A., and Margaria, R., 1965, An analysis of the mechanics of phonation, J. Appl. Physiol., 20: 301–307.Google Scholar
  4. Durrant, G. D., 1986, Laryngeal control of vocalization in the echolocating bat Eptesicus fuscus, Doctoral dissertation, Indiana University, Bloomington, IN, (in (in preparation).Google Scholar
  5. Elias, H., 1907, Zur Anatomie des Kehlkopfes der Microchiropteran, Morphologisches Jahrbuch, 37: 70–118.Google Scholar
  6. Fant, G., 1970, Acoustic Theory of Speech Producion, Mouton and Co., the Hague, Netherlands.Google Scholar
  7. Fattu, J. M., and Suthers, R. A., 1981, Subglottic pressure and the control of phonation by the echolocating bat, Eptesicus fuscus, J. Comp. Physiol., 143: 465–475.CrossRefGoogle Scholar
  8. Fischer, H., and Gerken, H., 1961, Le larynx de la chauve-souris ( Myotis myotis) et le larynx human, Ann. Oto-Laryngol., 78: 577–585.Google Scholar
  9. Fischer, H., and Vömel, H. J., 1961, Der Ultraschallapparat des Larynx von Myotis myotis, Gegenbaurs Jahrb. Morphol. Mikr. Anat., Abt 1., 102: 200–226.Google Scholar
  10. Flanagan, J. L., 1972, Speech analysis, synthesis and perception, 2nd Ed., Springer Verlag, N.Y.Google Scholar
  11. Gaunt, A. S., Gaunt, S. L. L., Casey, R. M., 1982, Syringeal mechanics reassessed: Evidence from Streptopelia, Auk., 99: 474–494.Google Scholar
  12. Greenwalt, C. H., 1968, Bird Song: Acoustics and Physiology, Smithsonian Insitution Press.Google Scholar
  13. Griffin, D. R., 1953, Acoustic orientation in the oilbird, Steatornis, Proc. Nat. Acad. Sci., 39: 884–893.PubMedCrossRefGoogle Scholar
  14. Griffin, D. R., 1958, Listening in the Dark. The Acoustic Orientation of Bats and Men, Yale University Press, New Haven, 413 pp.Google Scholar
  15. Griffiths, T. A., 1978, Modification of M. cricothyroideus and the larynx in the Mormoopidae, with reference to amplification of high-frequency pulses, J. Mammal, 59: 724–730.CrossRefGoogle Scholar
  16. Griffiths, T. A., 1983, Comparative laryngeal anatomy of the big brown bat, Eptesicus fuscus, and the mustached bat, Pteronotus parnellii, Mammalia, 47: 377–394.Google Scholar
  17. Habersetzer, J., 1981, Adaptive echolocation sounds in the bat Rhinopoma hardwickei, a field study, J. Comp. Physiol., 144: 559–566.CrossRefGoogle Scholar
  18. Herbert, H., 1985, Echolocation in the megachiropteran bat, Rousettus aegyptiacus, Abstracts of 7th Intern. Bat Research Conf., Aberdeen.Google Scholar
  19. Isshiki, N., 1964, Regulatory mechanism of voice intensity variation, J. Speech Hear. Res., 7: 17–29.Google Scholar
  20. Kick, S. A., and Simmons, J. A., 1984, Automatic gain control in the bats’ sonar receiver and the neuroethology of echolocation, J. Neuroscience, 4: 2725–2737.Google Scholar
  21. Kinsler, L. E., and Frey, A. R., 1962, Fundamentals of Acoustics, 2nd Ed., John Wiley and Sons, N. Y.Google Scholar
  22. Kobler, J. B., Wilson, B. S., Henson, O. W., Jr., Bishop, A. L., 1985, Echo intensity compensation by echolocating bats, Hearing Research, 20: 99–108.PubMedCrossRefGoogle Scholar
  23. Kulzer, E., 1960, Physiologishe und Morphologische Untersuchunge über die Erzeugung der Orientierungslaute von Flughunden der Gattung Rousettus, Z. vergl. Physiol., 43: 231–268.CrossRefGoogle Scholar
  24. Ladefoged, P., 1968, Linguistic aspects of respiratory phenonema, Ann. N. Y. Acad. Sci., 155: (1): 141–150.CrossRefGoogle Scholar
  25. Lieberman, P., 1977, Speech Physiology and Acoustics Phonetics: An Introduction. MacMillan Publishing Co., Inc., N. Y.Google Scholar
  26. Matsumura, S., 1979, Mother-infant communication in a horseshoe bat (Rhinolophus ferrumequinum nippon: Development of vocalization, J. Mammal. 60: 76–84.CrossRefGoogle Scholar
  27. Medway, L., 1967, The function of echonavigation among swiftlets, Anim. Behay., 15: 416–420.CrossRefGoogle Scholar
  28. Mähres, F. P., 1953, über die Ultraschallorientierung der Hufeisen-nasen (Chiroptera-Rhinolophinae), Z. Vergl. Physiol., 34: 547–588.CrossRefGoogle Scholar
  29. Mähres, F. P., and Kulzer, E., 1956. Über die Orientierung der Flughunde (Chiroptera, Pteropodidae), Z. Vergl. Physiol., 38: 1–29.CrossRefGoogle Scholar
  30. Novick, A., 1958, Orientation in paleotropical bats. II. Megachiroptera, J. Exper. Zool., 137: 443–462.CrossRefGoogle Scholar
  31. Novick, A., Griffin, D. R., 1961, Laryngeal mechanisms in bats for the production of orientation sounds, J. Exper. Zool., 148: 125–145.CrossRefGoogle Scholar
  32. Pye, J. D., 1967, Synthesizing the waveforms of bats’ pulses, in: “Animal Sonar Systems, Biology and Bionics,” R.-G. Busnel, ed., pp. 43–64, Laboratoire de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas.Google Scholar
  33. Roberts, L. H., 1972, Variable resonance in constant frequency bats, J. Zool. (Lond.), 166: 337–348.CrossRefGoogle Scholar
  34. Roberts, L. H., 1973, Cavity resonances in the production of orientation cries, Periodicum Biologorum, 75: 27–32.Google Scholar
  35. R’bsamen, R., and Schuller, G., 1981, Laryngeal nerve activity during pulse emission in the CF-FM bat, Rhinolophus ferrumequinum. II. The recurrant laryngeal nerve, J. Comp. Physiol., 143: 323–327.CrossRefGoogle Scholar
  36. Schuller, G., Beuter, K., and Schnitzler, H.-U., 1974, Response to frequency shifted artificial echoes in the bat Rhinolophus ferrumequinum, J. Comp. Physiol., 89: 275–286.CrossRefGoogle Scholar
  37. Schuller, G., and Rübsamen R., 1981, Laryngeal nerve activity during emission in the CF-FM bat, Rhinolophus ferrumequinum I. Superior laryngeal nerve (External motor branch), J. Comp. Physiol., 143: 317–321.CrossRefGoogle Scholar
  38. Schuller, G., and Suga, N., 1976, Laryngeal mechanisms for the emission of CF-FM sounds in the Doppler-shift compensating bat, Rhinolophus ferrumequinum, J. Comp. Physiol., 107: 253–262.CrossRefGoogle Scholar
  39. Simmons, J.A., Lavender, W. A., Lavender, B. A., Childs, J. E., Hulebak, K., Rigden, M. R., Sherman J., and Woolman, B., 1978, Echolocation by free-tailed bats (Tadarida), J. Comp. Physiol., 125: 291–299.CrossRefGoogle Scholar
  40. Suga, N., O’Neill, W. E., Kujirai, K., and Manabe, T., 1983, Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat, J. Neurophysiol., 49: 1573–1626.PubMedGoogle Scholar
  41. Summers, C. A., 1983, Acoustic orientation in the megachiropteran bat, Rcusettus, Docotral dissertation, Indiana University, Bloomington, IN.Google Scholar
  42. Suthers, R. A., 1986a, Echolocating bats have a high vocal efficiency, in preparation.Google Scholar
  43. Suthers, R. A., 1986b, Avian vocal tract resonance: Structural variation produces individually unique vocalizations in oilbirds. Submitted for publication.Google Scholar
  44. Suthers, R. A., Durrant, G. E., 1980, The role of the anterior and posterior cricothyroid muscles in the production of echolocative pulses by Mormoopidae, in: “Animal Sonar Systems,” R.-G. Busnel and J. F. Fish, ed., pp. 995–997, New York: Plenum Press.Google Scholar
  45. Suthers, R. A., Fattu, J. M., 1973, Mechanisms of sound production by echolocating bats, Amer. Zool., 13: 1215–1226.Google Scholar
  46. Suthers, R. A., Fattu, J. M., 1982, Selective laryngeal neurotomy and the control of phonation by the echolocating bat, Eptesicus, J. Comp. Physiol., 145: 529–537.CrossRefGoogle Scholar
  47. Suthers, R. A., and Hector, D. H., 1982, Mechanism for the production of echolocating clicks by the grey swiftlet, Collocalia spodiopygia, J. Comp. Physiol., 148: 457–470.Google Scholar
  48. Suthers, R. A., and Hector, D. H., 1985, The physiology of vocalization by the echolocating oilbird, Steatornis caripensis, J. Comp. Physiol. A., 156: 243–266.CrossRefGoogle Scholar
  49. Suthers, R. A., and Hector, D. H., 1986, Individual variation in vocal tract resonace may assist oilbirds in recognizing echoes of their own sonar clicks, this volume.Google Scholar
  50. Suthers, R. A., Wenstrup, J. J., 1986, Acoustic significance of rigid tracheal pouches and inflated nasal chambers in the echolocating horseshoe bat, Rhinolophus hildebrandti, in preparation.Google Scholar
  51. Thomas, S. P., and Suthers, R. A., 1972, The physiology and energetics of bat flight, J. Exper. Biol., 57: 317–335.Google Scholar
  52. Wiederhielm, C. A., Weston, B. V., 1973, Microvascular lymphatic and tissue pressures in the unanesthetized mammal, Am. J. Physiol., 225: 992–996.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Roderick A. Suthers
    • 1
  1. 1.School of Medicine and Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations