Advertisement

Disordered, Low Energy Component of the Magnetic Response in Both Antiferromagnetic and Superconducting Y-Ba-Cu-O Samples

  • F. Mezei
Part of the NATO ASI Series book series (NSSB, volume 246)

Abstract

Neutron scattering lends itself as a prominently powerful and direct tool to the investigation of magnetic phenomena, under the assumption that the magnetic scattering effects can be unambiguously identified and separated from an often stronger background of non-magnetic signal. This is the case in particular with relatively small magnetic effects, such as in high Tc superconductors. Magnetic Bragg peaks and excitations around them can be well identified by their localized character in the reciprocal space. On the other hand, the hardly q dependent diffuse scattering from magnetic disorder can only be identified by the use of polarization analysis, which implies a dramatic loss of neutron intensity, i.e. sensitivity. This latter kind, much more limited studies performed by now are complementary to the single crystal work described in other contributions in this volume and they provide evidence for the existence of a disorder type, relatively low frequency range contribution to the total magnetic response in Y-Ba-Cu-O compounds. This “impurity” kind magnetism is expected to also manifest itself in µSR and NMR experiments.

Keywords

Neutron Diffraction Polarization Analysis Diffuse Scattering Magnetic Scattering Neutron Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Mezei, in: “Use and development of Low and Medium Flux Research Reactors”, O.K Harling, L. Clark, P. von der Hartd, Supplement to Atomenergie-Kerntechnik Vol. 44, Karl Thiemig, München (1984) p. 735.Google Scholar
  2. 2.
    B.P Toperverg, V.V. Runov, A.G. Gukasov, Phys. Lett. 71A:289 (1979)Google Scholar
  3. 3.
    F. Mezei and A.P. Murani, J. Mag. Mag. Mat. 14:211 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    S.V. Maleev, Soviet Phys. JETP Lett. 2:338 (1966).Google Scholar
  5. 5.
    F. Mezei, in: “Neutron Spin Echo”, F. Mezei, ed., Springer Verlag, Heidelberg (1980) p. 21.CrossRefGoogle Scholar
  6. 6.
    H. Kuzmany, M. Matus, E. Faulgues, S. Pekker, Gy. Hutiray, E. Zsoldos and L. Mihaly, Solid State Comm. 65: 1343 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    F. Mezei, B. Farago, C. Pappas, Gy. Hutiray, L. Rosta and L. Mihàly, Physica C 153–155: 1669 (1988).Google Scholar
  8. 8.
    J. Akimitsu and Y. Ito, J. Phys. Soc. Japan 40:1621 (1976).Google Scholar
  9. 9.
    T. Brückel, H. Capellman, W. Just, O. Sch¤rpf, S. Kemmler-Sack, R. Kiemel and W. Sch¤fer, Europhys. Lett. 4:1189 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    T. Bruckel, K.U. Neumann, H. Capeilmann, O. Scharpf, S. Kemmler-Sack, R. Kiemel and W. Schäfer, J. de Physique, suppl. 49: C8–2155 (1988).Google Scholar
  11. 11.
    H. Capellmann and O. Schärpf, Z. Phys. B, in press; H. Capelimann, in this volume.Google Scholar
  12. 12.
    B. Gillon, D. Petitgrand, A. Delapalme, G. Collin and P. Schweiss, Physica C, in press, and J. Rossat-Mignod, in this volume.Google Scholar
  13. 13.
    A.J. Dianoux et al. in: “Proc. of Workshop on High Temp. Supercond.”, Dubna, July 1989, World Scientific (Singapore) in press.Google Scholar
  14. 14.
    See contributions by H. Mook, J. Rossat-Mignod, G. Shirane and J.M. Tranquada in this volume.Google Scholar
  15. 15.
    See contributions by C. Berthier and M. Takigawa in this volume.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • F. Mezei
    • 1
  1. 1.Hahn-Meitner-InstitutBerlin 39Germany

Personalised recommendations