Advertisement

Analytic Evaluation of the 1-Hole Spectral Function for the 1-D t-J Model in the Limit J → 0

  • Michael Ziegler
  • Peter Horsch
Part of the NATO ASI Series book series (NSSB, volume 246)

Abstract

Some twenty years ago Brinkman and Rice (BR) [1] studied in detail the form of the density of states (DOS) for a single hole in a half-filled one-band Hubbard model in the atomic limit, described by the effective Hamiltonian
$$ H = - t\sum\limits_{ < i,j > \sigma } {(1 - {n_{i, - \sigma }})a_{i,\sigma }^ + {a_{j,\sigma }}} (1 - {n_{j, - \sigma }}) + h.c. $$
(1)

Keywords

Spin Fluctuation Exact Diagonalization Singlet Ground State Spin Wave Theory Lower Hubbard Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.F. Brinkman and T.M. Rice, Phys. Rev. B 2, 1324 (1970)ADSCrossRefGoogle Scholar
  2. [2]
    Y. Nagaoka, Solid State Comm. 3, 409 (1965); Phys. Rev. 147, 392 (1966)Google Scholar
  3. [3]
    T.M. Rice and W.F. Brinkman, in Critical Phenomena in Alloys, Magnets and Superconductors, edited by R.E. Mills, E. Ascher and R.I. Jaffee, McGraw-Hill Series in Materials Science and Engineering (McGraw-Hill, 1971 )Google Scholar
  4. [4]
    W. Brenig and K.W. Becker, Z. Phys. B 76, 473 (1989)Google Scholar
  5. [5]
    C.L. Kane, P.A. Lee, N. Read, Phys. Rev. B 39, 6880 (1989)Google Scholar
  6. [6]
    R.R. Bartkowski, Phys. Rev. B 5, 4536 (1972)Google Scholar
  7. [7]
    K.J. von Szczepanski et al., Phys. Rev. B 41, (Feb 1990)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Michael Ziegler
    • 1
  • Peter Horsch
    • 1
  1. 1.Max-Planck Institut für FestörperforschungStuttgartFederal Republic of Germany

Personalised recommendations