Magnetic Properties of a Granular Superconductor

  • R. Hetzel
  • T. Schneider
Part of the NATO ASI Series book series (NSSB, volume 246)


We investigate the magnetic properties of the disordered and frustrated XY-model to model weakly coupled superconducting grains in a magnetic field. Extending the mean field approximation to include the induced field, we treat the magnetic field self- consistently and derive the internal field distribution. Furthermore we calculate numerically the critical line in the (H,T)-phase diagram, providing evidence for the experimentally observed H 2/3 behavior. Moreover we study the nonequilibrium properties in terms of the relaxation of the excess magnetization following a field jump. Our numerical results exhibit the aging effect previously found in spin glasses and in high temperature superconductors.


Spin Glass Critical Line Josephson Current Thermoremanent Magnetization Positive Definite Hermitian Matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.A. Müller, M. Takshige and J. G. Bednorz, Phys. Rev. Lett. 58, 1143 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    G. Deutscher and K.A. Müller, Phys. Rev. Lett. 59, 1745 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    I. Morgenstern, K.A. Müller and J.G. Bednorz, Z. Phys. B - Condensed Matter 69, 33 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    J.R. Clem, Physica C 153–155, 50 (1988)Google Scholar
  5. 5.
    W.Y. Shih, C. Ebner and D. Stroud, Phys. Rev. B 30, 134 (1984);ADSCrossRefGoogle Scholar
  6. C. Ebner and D. Stroud, Phys. Rev. B 31, 165 (1985)ADSCrossRefGoogle Scholar
  7. 6.
    L. Lundgren, P. Svedlindh, P. Nordblad and O. Beckman, Phys. Rev. Lett. 51, 911 (1983)ADSCrossRefGoogle Scholar
  8. 7.
    C. Rossel, Y. Maeno and I. Morgenstern, Phys. Rev. Lett. 62, 681 (1989)ADSCrossRefGoogle Scholar
  9. 8.
    T. Schneider, D. Würtz and R. Hetzel, Z. Phys. B - Condensed Matter 72, 1 (1988)ADSCrossRefGoogle Scholar
  10. 9.
    S. Teitel and C. Jayaprakash, Phys. Rev. B 27 598 (1983);ADSCrossRefGoogle Scholar
  11. Phys. Rev. Lett. 51, 1992 (1983)Google Scholar
  12. 10.
    M. Choi and S. Doniach, Phys. Rev. B 31, 4516 (1985)ADSCrossRefGoogle Scholar
  13. 11.
    H. Keller, B. Pümpin, W. Kündig, W. Odermatt, B.D. Patterson, J.W. Schneider, H. Simmler, K.A. Müller, J.G. Bednorz, K.W. Blazey, C. Rossel, and I. Morgenstern and I.M. Savic, Physica C, 153–155, 71 (1988)ADSCrossRefGoogle Scholar
  14. 12.
    D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)ADSCrossRefGoogle Scholar
  15. 13.
    R. Hetzel and T. Schneider, Z. Phys. B - Condensed Matter 73, 303 (1988)ADSCrossRefGoogle Scholar
  16. 14.
    R. Hetzel, M. Vanhimbeeck and T. Schneider, Z. Phys. B - Condensed Matter 76, 259 (1989)ADSCrossRefGoogle Scholar
  17. 15.
    J.M. Kosterlitz and DJ. Thouless, J. Phys. C 6, 1181 (1973);ADSCrossRefGoogle Scholar
  18. J.M. Kosterlitz, J. Phys. C 7, 1046 (1974)ADSCrossRefGoogle Scholar
  19. 16.
    B. Berge, H.T. Diep, A. Ghazali and P. Lallemand, Phys. Rev. B 34, 3177 (1986)ADSCrossRefGoogle Scholar
  20. 17.
    M.Y. Choi, J.S. Chung and D. Stroud, Phys. Rev. B 35, 1669 (1987)ADSCrossRefGoogle Scholar
  21. 18.
    P. Svedlindh, P. Granberg, P. Norblad, L. Lundgren and H.S. Chen, Phys. Rev. B 35, 268 (1987)ADSCrossRefGoogle Scholar
  22. 19.
    For a current review of flux pinning see, for example, E.H. Brandt, and U. Essmann, Phys. Status Solidi B, 144, 13 (1987)ADSCrossRefGoogle Scholar
  23. 20.
    G.J.M. Koper and H.J. Hilhorst, J. Phys. (Paris) 49, 429 (1988)CrossRefGoogle Scholar
  24. 21.
    P. Sibani and K.H. Hoffmann, Phys. Rev. Lett. 63, 2853 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • R. Hetzel
    • 1
  • T. Schneider
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of HeidelbergHeidelbergWest Germany
  2. 2.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations