Non Linear Analysis of Traveling Waves in Binary Convection

  • David Bensimon
  • Alain Pumir
Part of the NATO ASI Series book series (NSSB, volume 237)

Abstract

Much effort has been devoted recently to the phenomenon of convection in binary mixtures. A rich variety of dynamical states has been found experimentally1–5. Contrary to what happens for pure fluid convection the conducting state gets destabilized at finite frequency through a Hopf bifurcation6. In certain circumstances, a system of propagative rolls appears, with a subcritical transition when the control parameter is increased. These traveling waves have non trivial interactions that lead to novel and rather complex phenomena. Binary mixture convection is therefore an appropriate tool for studying chaotic behavior in large physical systems and the so called ‘weak turbulence’ regime.

Keywords

Convection Stratification Boris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    E. Moses and V. Steinberg, Phys. Rev. A34, 693 (1986)ADSCrossRefGoogle Scholar
  2. 2).
    E. Moses, J. Fineberg and V. Steinberg, Phys. Rev. A35, 2757 (1987)ADSCrossRefGoogle Scholar
  3. 3).
    R.W. Walden, P. Kolodner, A. Passner and C. Surko, Phys. Rev. Lett. 61, 2030 (1985)Google Scholar
  4. 4).
    P. Kolodner, D. Bensimon and C. Surko, Phys. Rev. Lett. 60, 1723 (1988)ADSCrossRefGoogle Scholar
  5. 5).
    T.S. Sullivan and G. Ahlers, Phys. Rev. Lett. 61, 78 (1988)ADSCrossRefGoogle Scholar
  6. 6).
    D.T.J. Hurle and F. Jakeman, J. Fluid Mech. 47, 667 (1971)ADSCrossRefGoogle Scholar
  7. 7).
    B.J.A. Zielinska and H.R. Brand, Phys. Rev. A35, 4349 (1987)ADSCrossRefGoogle Scholar
  8. 8).
    M.C. Cross and K. Kim, Phys. Rev. A37, 3909 (1988)MathSciNetADSCrossRefGoogle Scholar
  9. 9).
    E. Knobloch, Phys. Rev. A34, 1536 (1986)Google Scholar
  10. 10).
    D. Bensimon, A. Pumir and B. Shraiman, in preparationGoogle Scholar
  11. 11).
    B. Shraiman, Phys. Rev. A36, 261 (1987)ADSCrossRefGoogle Scholar
  12. 12).
    M.N. Rosenbluth, H.L. Berk, I. Doxas and W. Horton, Phys. Fluids 30, 2636 (1987)ADSMATHCrossRefGoogle Scholar
  13. 13).
    C.S. Bretherton and E.A. Spiegel, Phys. Lett. 96A, 152 (1983)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • David Bensimon
    • 1
  • Alain Pumir
    • 1
    • 2
  1. 1.Laboratoire de Physique StatistiqueEcole Normale SupérieureParis CedexFrance
  2. 2.CEN SaclaySPTGif-sur-YvetteFrance

Personalised recommendations