Advertisement

Pattern Selection and Symmetry Competition in Materials Instabilities

  • Daniel Walgraef
Part of the NATO ASI Series book series (NSSB, volume 237)

Abstract

One of the most natural and still intriguing behavior of complex physico-chemical systems driven sufficiently far from thermal equilibrium is their ability to undergo symmetry-breaking instabilities leading to the spontaneous formation of coherent structures over macroscopic time and space scales (Nicolis and Prigogine, 1977). Such a behavior has been widely studied in various fields including physics, biophysics, chemistry and materials science. The question of why order appears spontaneously and which patterns are selected among a large manifold of possibilities remains a major theme of experimental and theoretical research (Swinney and Gollub, 1981, Nicolis and Baras, 1983, Hlavacek, 1985). Even though this research was at first fundamental in nature, it now appears more and more to be of technological importance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.Ackerman, L.P.Kubin, J.Lepinoux and H.Mughrabi, Acta Metall 32 (1984), p. 715.CrossRefGoogle Scholar
  2. V.Balakrishnan and C.E.Bottani,“Mechanical Properties and Behavior of Solids: PlasticInstabilities World Scientific, Singapore, 1986.Google Scholar
  3. L.Buchinger, S.Stanzl and C.Laird, Phil.Mag. 50 (1984), p. 275.CrossRefGoogle Scholar
  4. R.Bullough, B.L.Eyre and K.Krishan, J.Nucl.Mat. 44 (1975), p. 121.Google Scholar
  5. R.W.Cahn,Nature 329 (1987), p. 284.Google Scholar
  6. P.Coullet, C.Elphick and D.Repaux, Phys.Rev.Lett. 58 (1987), p. 431.MathSciNetCrossRefGoogle Scholar
  7. U.Essmann and H.Mughrabi, Phil.Mag. 40 (1979), p. 731.Google Scholar
  8. J.H.Evans, Mater.Sci.Forum 15–18 (1987), p. 869.CrossRefGoogle Scholar
  9. N.M.Ghoniem and G.L.Kulcinski, Radiation Effects 39 (1978), p. 47.CrossRefGoogle Scholar
  10. GuckenheimerGuckenheimer, J.Moser and S.Newhouse, “Dynamical Systems,Birkhauser, Boston, 1980.Google Scholar
  11. V.Hlavacek, “Dynamics of Nonlinear Systems,Gordon and Breach, New York, 1985.Google Scholar
  12. N.Y. Jin and A.T.Winter, Acta Metall. 32 (1984), p. 1173.CrossRefGoogle Scholar
  13. W.Jäger, P.Ehrhart and W.Schilling, in “Nonlinear Phenomena in Materials Science,G.Martin and L.P.Kubin eds., Transtech, Aedermannsdorf (Switzerland), 1988, p. 279.Google Scholar
  14. K.Krishan, Radiat.Eff. 66 (1982), p. 121.CrossRefGoogle Scholar
  15. G.Martin, Phys.Rev. B30 (1984), p. 1424.CrossRefGoogle Scholar
  16. G.Martin and L.P.Kubin eds., “Nonlinear Phenomena in Materials Science,Transtech, Aedermannsdorf (Switzerland), 1988.Google Scholar
  17. S.M.Murphy, Europhys.Lett 3 (1987), p. 1267.CrossRefGoogle Scholar
  18. G.Nicolis and I.Prigogine, “Self-Organization in Non Equilibrium Systems,Wiley, New York, 1977.Google Scholar
  19. G.Nicolis and F.Baras, “Chemical Instabilities, Applications in Chemistry, Engineering, Geology and Materials Science,Reidel, Dordrecht, 1983.Google Scholar
  20. C.Normand, Y.Pomeau and M.Velarde, Convective Instabilities, a Physicist Approach, Rev. Mod. Phys. 49 (1977), 581–624.CrossRefGoogle Scholar
  21. R.Ocelli, E.Guazzelli and J.Pantaloni, J.Physique Lett. 44 (1983), p. L567.CrossRefGoogle Scholar
  22. C.Schiller and D.Walgraef, Acta Metall. 36 (1987), p. 563.CrossRefGoogle Scholar
  23. H.L.Swinney and J.P.Gollub, “Hydrodynamic Instabilities and the Transition to Turbulence,Springer, Berlin, 1981.Google Scholar
  24. T.Tabata, H.Fujita, M.Hiraoka and K.Onishi, Phil.Mag. A47 (1983), p. 841.CrossRefGoogle Scholar
  25. N.Thompson, N.Wadsworth and N.Louat, Philos.Mag 1 (1956),p. 113.Google Scholar
  26. D.Walgraef and E.C.Aifantis, J.Appl.Phys. 58 (1985), p. 688.CrossRefGoogle Scholar
  27. D.Walgraef and E.C.Aifantis, Int.J.Engng.Sci. 23 (1986), 1351, 1359,1364. D.Walgraef and C.Schiller, Physica D 27 (1987), p. 423.Google Scholar
  28. D.Walgraef, “Patterns, Defects and Microstructures in Nonequilibrium Systems,Marti-nus Nijhoff, Dordrecht, 1987.Google Scholar
  29. D.Walgraef and E.C.Aifantis, Res Mechanica 23 (1988), p. 161.Google Scholar
  30. D.Walgraef, in “Nonlinear Phenomena in Materials Science,G.Martin and L.P.Kubin eds., Transtech, Aedermannsdorf (Switzerland), 1988, p. 77.Google Scholar
  31. D.Walgraef, “Structures Spatiales loin de l’Equilibre,Masson, Paris, 1988.Google Scholar
  32. D.Walgraef and N.M.Ghoniem, Spatial Instabilities and Dislocation Loop Ordering in Irradiated Materials, UCLA preprint.Google Scholar
  33. J.E.Wesfreid and S.Zaleski, “Cellular Structures in Instabilities,Lecture Notes in Physics 210, Springer, Berlin, 1984.CrossRefGoogle Scholar
  34. A.T.Winfree, “The Geometry of Biological Time, Springer, Berlin, 1980.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Daniel Walgraef
    • 1
  1. 1.Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations