Non Linear Spatial Analysis: Application to the Study of Flows Subjected to Thermocapillary Effects

  • P. Laure
  • H. Ben Hadid
  • B. Roux
Part of the NATO ASI Series book series (NSSB, volume 237)


In the long term the motivation of this study is to look at the convective motions occurring during the growth of metals and semiconductor crystals in open horizontal boats (e.g. Bridgman technique).


Phase Portrait Basic Flow Center Manifold Saddle Node Bifurcation Marangoni Number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ben Hadid, H., and Roux, B., 1987, Thermocapillary convection in long horizontal layers of low—Prandtl number melts subject to an horizontal temperature gradient, J. Fluid Mech. (to appear).Google Scholar
  2. Ben Hadid, H., Laure, P., and Roux, B., 1988, Non linear study of the flow in a long rectangular cavity subjected to thermocapillary effect, Physics of Fluid (submitted).Google Scholar
  3. Birikh, R. V., 1966, Thermocapillary Convection in a Horizontal Layer of Liquid“, T. of Applied Mechanics and Technical Physics, 3, 69–72.Google Scholar
  4. Bye, J. A. T., 1966, Numerical solutions of the steady-state vorticity equation in rectangular basins, J. Fluid Mech., 26, part. 3, 577–598.ADSMATHCrossRefGoogle Scholar
  5. Davis, S. H., 1987, Thermocapillary instabilities, Ann. Rev. Fluid Mech., 19, 403–435.ADSMATHCrossRefGoogle Scholar
  6. Demay, Y., and Iooss, G., 1984, Calcul des solutions bifurquées pour le problème de Couette-Taylor avec deux cylindres en rotation, J. de Meca. Théor. et Appliq., numéro spécial, 196–216.Google Scholar
  7. Guckenheimer, J., and Holmes, P., 1983, Nonlinear oscillations, Dynamical Systems, and bifurcations of vector fields, Appl. Math. Sciences, A2, Springer.Google Scholar
  8. Iooss, G., 1987, Reduction of the dynamics of a bifurcation problem using normal forms and symmetries, E. Tirapegui and D. Villaroel (eds), Instabililities and Nonequilibrium Structures, 3–40. D. Reidel Publishing Company.CrossRefGoogle Scholar
  9. Laure, P., and Demay, Y., 1988, Symbolic computation and equation on center manifold: application to the Couette—Taylor problem, Computers & Fluids, Vol. 6, N 3, 229–238 (1988).MathSciNetCrossRefGoogle Scholar
  10. Strani, M., Piva, R., and Graziani, 1983, G., Thermocapillary convection in a rectangular cavity: asymptotic theory and numerical simulation, J. Fluid Mech., 130, 347–376.ADSMATHCrossRefGoogle Scholar
  11. Vanderbauwhede, A., 1988, Center Manifolds, normal forms and elementary bifurcations,Dynamics Reported, 2, J. Wiley & B. G. Teulner (To appear).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. Laure
    • 1
  • H. Ben Hadid
    • 2
  • B. Roux
    • 2
  1. 1.Lab. de MathématiquesNiceFrance
  2. 2.Institut de Mécanique des FluidesMarseilleFrance

Personalised recommendations