Probabilistic Cellular Automaton Models for a Fluid Experiment

  • R. Livi
  • S. Ruffo
Part of the NATO ASI Series book series (NSSB, volume 237)


In the study of cellular automata (CA) there is often the problem of understanding if the observed spatio-temporal behaviour may be significant from a physical point of view. In this contribution we compare the behaviour of an experimental system — a fluid in an annular cell heated from below — with that of suitably chosen probabilistic CA rules. This has been made possible by the reduction of the space-time evolution of the experimental system to a symbolic dynamics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagnoli F. et al., 1988, in Proceedings of the Workshop CHAOS AND COMPLEXITY, Torino, October 1987, R.Livi, S. Ruffo, S. Ciliberto and M. Buiatti eds., World Publishing, Singapore.Google Scholar
  2. Ciliberto S. and Bigazzi P., 1988, Phys. Rev. Lett., 60: 286.CrossRefGoogle Scholar
  3. Chaté H. and Manneville P., 1987, Phys. Rev. Lett., 58: 112 and Saclay-PreprintCrossRefGoogle Scholar
  4. Georges A. and Le Doussal P., 1987, Ecole Normale preprint LPTENS 87/21 OctGoogle Scholar
  5. Kaneko K., 1985, Prog. Theor. Phys., 74: 1033.CrossRefGoogle Scholar
  6. Kinzel W., 1985, Z. Phys., 58: 229.MathSciNetCrossRefGoogle Scholar
  7. Oppo G.L.and Kapral R., 1986, Phys. Rev., A33: 4219.CrossRefGoogle Scholar
  8. Pomeau Y., 1986, Physica, D23: 3Google Scholar
  9. Rujan P., 1987, J. Stat. Phys., 49: 139.MathSciNetCrossRefGoogle Scholar
  10. Vichniac G., Tamayo P. and Hartmann H., 1986, J. Stat. Phys., 45: 875.CrossRefGoogle Scholar
  11. Wolfram S., 1983, Rev. Mod. Phys., 55: 601.MathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. Livi
    • 1
  • S. Ruffo
    • 1
  1. 1.Istituto Nazionale di FisicaNucleare Sez. di FirenzeFirenzeItaly

Personalised recommendations