Advertisement

Phase Turbulence, Spatiotemporal Intermittency and Coherent Structures

  • Hugues Chaté
  • Basil Nicolaenko
Part of the NATO ASI Series book series (NSSB, volume 237)

Abstract

The essentially spatiotemporal dynamics of extended physical systems is still poorly understood. Indeed, in spite of the success of dynamical systems theory to explain the deterministic chaos occurring in confined situations, this approach is unable to handle the complex behaviors appearing when the spatial structure is not frozen. From this point of view, turbulence may be seen as the ultimate complex system, and it seems interesting to study models of extended systems somewhat “simpler” than the Navier-Stokes equations but nevertheless retaining some of the essential physics of the problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aimar, M.T., and Penel, P., 1983, Some Numerical Aspects of a Disturbed Premixed Flame Front Study, in Publ. Math. Appl. Marseilles-Toulon, 2.Google Scholar
  2. Bondarenko, N.F., Gak, M.Z., and Dolzhansky, F.V., 1979, Atmospheric and Oceanic Physics 15: 711.Google Scholar
  3. Chaté, H., and Manneville, P., 1987, Transition to Turbulence via Spatiotemporal Intermittency, Phys. Rev. Lett. 58: 112.CrossRefGoogle Scholar
  4. Chaté, H., Manneville, P., Nicolaenko, B., and She, Z.S., 1988, in preparation.Google Scholar
  5. Depassier, M.C., and Spiegel, E.A., 1981, The Large Scale Structure of Compressible Convection, Astro. Jour. 86 (3): 496.CrossRefGoogle Scholar
  6. Hyman, J.M., Nicolaenko, B., and Zaleski, S., 1986, Order and Complexity in the Kuramoto-Sivashinsky Model of Weakly Turbulent Interfaces, Physica D 23: 265.MathSciNetCrossRefGoogle Scholar
  7. Kolmogorov, A.N., 1960, in Seminar Notes edited by V.I. Arnold and L.D. Meshalkin, Uspekhi Mat. Naut. 15: 247.Google Scholar
  8. Manneville, P., 1988, The Kuramoto-Sivashinsky Equation: a Progress Report, in Propagation in Systems Far from Equilibrium, J.E. Wesfreid et al. ed., Springer.Google Scholar
  9. Moffatt, H.K., 1987, Geophysical and Astrophysical Turbulence, in Advances in Turbulence, G. Comte-Bellot and J. Mathieu ed., Springer, and references therein.Google Scholar
  10. Nicolaenko, B., 1987, Large Scale Spatial Structure in Two-Dimensional Turbulent Flows, Nucl. Phys. B (Proc. suppl.) 2: 453.CrossRefGoogle Scholar
  11. Pomeau, Y., 1986, Front Motion, Metastability and Subcritical Bifurcations in Hydrodynamics, Physica D 23: 3.CrossRefGoogle Scholar
  12. Pomeau, Y., and Manneville, P., 1980, Wavelength Selection in Cellular Flows, Phys.Lett. A75: 296.CrossRefGoogle Scholar
  13. Poyé, J.P., 1983, The Rayleigh-Bénard Two-Dimensional Convection in a Fluid between Two Plates of Finite Conductivity, Thesis, Columbia University.Google Scholar
  14. She, Z.S., 1987a, Instabilités et dynamique à grande échelle en turbulence, Thèse de l’Université Paris 7.Google Scholar
  15. She, Z.S., 1987b, Metastability and Vortex Pairing in the Kolmogorov Flow, Phys.Lett.A 124: 161.MathSciNetCrossRefGoogle Scholar
  16. Shraiman, B.S., 1986, Order Disorder and Phase Turbulence, Phys. Rev. Lett. 57: 325.CrossRefGoogle Scholar
  17. Hohenberg, P.C. and Shraiman, B.S., 1988, Chaotic Behavior of an Extended System, preprint.Google Scholar
  18. Sivashinsky, G.I., 1985, Weak Turbulence in Periodic Flows, Physica D 17: 243.MathSciNetCrossRefGoogle Scholar
  19. Yakhot, V., and Sivashinsky, G.I., 1987, Negative Viscosity Effects in Three Dimensional Flows, Phys. Rev. A 35: 815.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Hugues Chaté
    • 1
    • 2
  • Basil Nicolaenko
    • 1
  1. 1.Center for Nonlinear Studies and Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Institut de Recherche FondamentaleDPh-G/PSRM, CEN-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations