Spatio Temporal Intermittency in Rayleigh-Benard Convection in an Annulus

  • S. Ciliberto
Part of the NATO ASI Series book series (NSSB, volume 237)


Spatio temporal intermittency is a problem of great current interest that has been theoretically studied in system of coupled maps [Kaneko; Chate’-Manneville], partial differential equations[Chate’-Manneville;Nicolaenko] and in some cellular automata [Chate’-Ma.nneville; Bagnoli et al.; Livi]. It consists of a fluctuating mixture of laminar and turbulent domains with well defined boundaries. Such a behaviour appears also in Rayleigh Berard convection[Ciliberto-Bigazzi; Berge’] and in boundary layer flows[Van Dyke; Tritton]. We report here a statistical analysis of the onset of spatiotemporal intermittency clone in an experiment of Rayleigh-Benard convection. Our results display features typical of phase transitions similar to those obtained by Chate’-Manneville and Kaneko. In what is following we describe very briefly the experimental apparatus. In section 3) we will show the spatial patterns that preceed the spatiotemporal intermittency. In section 4) we descibe the reduction of the space time evolution to a symbolic dynamic and we report only the main results of the statistical analysis whose details have been the object of a previous paper[Ciliberto-Bigazzi].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagnoli F., Ciliberto S., Francescato A., Livi R., Ruffo S., in “Chaos and complexity”, M. Buiatti, S. Ciliberto, R. Livi, S. Ruffo eds., ( World Scientific Singapore 1988 ).Google Scholar
  2. Berge’ P., in “ The Physics of Chaos and System Far From Equilibrium”, M. Duongvan and B. Nicolaenko, eds. ( Nuclear Physics B, proceedings supplement 1988 ).Google Scholar
  3. Chate H. Manneville P., Phys.Rev.Lett. 54, 112 (1987);CrossRefGoogle Scholar
  4. Chate H. Manneville P., Europhysics Letters 6, 591 (1988);CrossRefGoogle Scholar
  5. Chate H. Manneville P., Physica D in press; see also these proceedings.Google Scholar
  6. Ciliberto S., Bigazzi P.,Phys.Rev.Lett.60,286(1988).CrossRefGoogle Scholar
  7. Ciliberto S., Francini F., Simonelli F., Optics Commun. 54, 381 (1985).CrossRefGoogle Scholar
  8. Ciliberto S., Rubio M.A., Phys.Rev.Lett. 58, 25 (1987).CrossRefGoogle Scholar
  9. Crutchfield J., Kaneko K. in “Direction in Chaos”, B.L. Hao (World Scientific Singapore 1987 ).Google Scholar
  10. Dubois M.,in these prooceedings.Google Scholar
  11. Kaneko K., Prog.Theor.Phys.74,1033(1985).CrossRefGoogle Scholar
  12. Livi R., in these prooceedings.Google Scholar
  13. Muller-Krumbhaar H. in ‘Monte Carlo Method in Statistical Physics“, edited by K.Binder (springer Verlag,New York 1979).Google Scholar
  14. Nicolaenko B., in “ The Physics of Chaos and System Far From Equilibrium”, M.Duong-van and B.Nicolaenko, eds. ( Nuclear Physics B, proceeding supplement 1988 ). See also these proceedings.Google Scholar
  15. Pomeau Y., Physica 23D, 3 (1986).Google Scholar
  16. Tritton D.J., Physical Fluid Dynamics (Van Nostrand Reinold, New York, 1979), Chaps.19–22.Google Scholar
  17. Van Dyke V.,An Album of Fluid Motion (Parabolic Press,Stanford,1982).Google Scholar
  18. Nelson D.R., ‘Phase transitions and critical phenomena,’ edited by C. Domb and J.L. Lebowitz (Academic,London 1983 )Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • S. Ciliberto
    • 1
  1. 1.Istituto Nazionale OtticaFirenzeItaly

Personalised recommendations