Vortex Dynamics in a Coupled Map Lattice

  • Tomas Bohr
  • Anders W. Pedersen
  • Mogens H. Jensen
  • David A. Rand
Part of the NATO ASI Series book series (NSSB, volume 237)


We present a new method for investigating the behaviour of partial differential equations, specifically the complex Ginzburg-Landau equation, by approximating them as systems of coupled map lattices. The method is very efficient and well suited to an investigation of possible universal results about the phase diagram and the transition to turbulence. Preliminary results on vortex structure, dynamics and occurrence are given and we note the existence of turbulent states well below the linear stability threshold from which we argue that one must investigate the dynamics in the regime of very low vortex density in order to gain useful insight into the onset of turbulence.


Hopf Bifurcation Turbulent State Vortex Pair Vortex Center Vortex State 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.C. Newell and J.A. Whitehead J. Fluid Mechanics 38, 279 (1969);ADSMATHCrossRefGoogle Scholar
  2. A.C. Newell in Lectures in Applied Mathematics, vol. 15, Am. Math. Society, Providence (1974).Google Scholar
  3. 2.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence Springer, Berlin (1980)Google Scholar
  4. 3.
    See e.g. J.M. Kosterlitz in “Nonlinear Phenomena at Phase Transitions and Instabilities” ed. T. Riste (Plenum 1982) p.397, or D.R. Nelson in “Phase Transitions and Critical Phenomena” vol. 7 ed. C.Domb and J.L. Lebowitz (Academic Press 1983) p.l.Google Scholar
  5. 4.
    H.R. Brand, P.S. Lomdahl and A.C. Ncwell, Physica 23D, 345 (1986).MATHGoogle Scholar
  6. 5.
    A.V. Gaponov-Grekhov and M.I. Rabinovich, Sov.Phys.Usp. 30, 433 (1987). A.V. Gaponov-Grekhov, A.S. Lomov, G.V. Osipov and M. I. Rabinovich, “Pattern formation and dynamics of two-dimensional structures in nonequilibrium dissipative media”. Gorky preprint (1988).Google Scholar
  7. 6.
    P. Coullet, L. Gil and J. Lega, “Defect mediated turbulence”. Nice preprint (1988).Google Scholar
  8. 7.
    For a recent review see P. Minnhagcn, Rev.Mod.Phys. 59, 1010Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Tomas Bohr
    • 1
  • Anders W. Pedersen
    • 1
  • Mogens H. Jensen
    • 2
  • David A. Rand
    • 3
  1. 1.The Niels Bohr InstituteCopenhagenDenmark
  2. 2.NORDITACopenhagenDenmark
  3. 3.Mathematics InstituteUniversity of WarwickCoventryDenmark

Personalised recommendations