A Two Dimensional Model of Pattern Evolution in Mixing Layers

  • R. Yang
  • P. Huerre
  • P. Coullet
Part of the NATO ASI Series book series (NSSB, volume 237)


The evolution of coherent structures in shear layers and wakes provides a particularly simple example of pattern dynamics in open spatially-developing non-equilibrium sys­tems. As in closed flows such as Rayleigh-Bénard convection, one observes a wealth of possible flow configurations involving dislocations, periodic arrays of vortices with distinct orientation, quasi-two dimensional vortical arrangements, etc. However, in contrast with Rayleigh-Bénard convection, the presence of a basic shear lifts the ori­entational degeneracy: vortices tend to remain more or less perpendicular to the flow direction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arter, W.D., & Newell, A.C., 1988, Numerical simulation of Rayleigh-Bénard convection in shallow tanks, Phys. Fluids, 31: 2474.MATHGoogle Scholar
  2. Browand, F.K., 1986, The structure of the turbulent mixing layer, Physica, 18D: 135.Google Scholar
  3. Browand, F.K., Forced, Ho, C.M., 1987, Forced, unbounded shear flows, Nuclear Physics B ( Proc. Suppl. ), 2: 139.Google Scholar
  4. Browand, F.K., & Prost-Domasky, S., 1989, Experiments on pattern evolution in the 2-D mixing layer, this volume.Google Scholar
  5. Coullet, P. & Fauve, S., 1985, Propagative phase dynamics for systems with Galilean invariance, Phys. Rev. Lett., 55: 2857.Google Scholar
  6. Coullet, P. Gil, L., & Lega, J., 1988, Defect mediated turbulence, preprint, University of Nice.Google Scholar
  7. Cross, M.C., & Newell, A.C., 1984, Convection patterns in large aspect ratio systems, Physica, 10D: 299.MathSciNetMATHGoogle Scholar
  8. Greenside, H.S., & Coughran, W.M., 1984, Nonlinear pattern formation near the onset of Rayleigh-Bénard convection, Phys. Rev., A30: 398.Google Scholar
  9. Huerre, P. 1987, Evolution of coherent structures in shear flows: a phase dynamics approach., Nuclear Physics, B (Proc. Suppl.), 2: 159.Google Scholar
  10. Newell, A.C., 1988, The dynamics of patterns: a survey, in: “Propagation in systems far from equilibrium”, J.E. Wesfreid, H.R. Brand, P. Manneville, G. Albinet, & N. Boccara, eds., Springer, Berlin.Google Scholar
  11. Pomeau, Y., Zaleski, S., & Manneville, P., 1983, Dislocation motion in cellular structures, Phys. Rev., A27: 2710.Google Scholar
  12. Siggia, E.D., & Zippelius, A., 1981, Dynamics of defects in Rayleigh-Bénard convection, Phys. Rev., A24: 1036.Google Scholar
  13. Stuber, K., & Gharib, M., 1988, Transition from order to chaos in the wake of an airfoil, preprint, University of California at Sari Diego.Google Scholar
  14. Swift, J., & Hohenberg, P.C., 1977, Hydrodynamic fluctuations at the convective instability, Phys. Rev., A15: 319.Google Scholar
  15. Tesauro, G., Cross, M.C., 1986, Climbing of dislocations in non-equilibrium patterns, Phys. Rev., A34: 1363.Google Scholar
  16. Williamson, C.H.K., 1989, Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, submitted to J. Fluid Mech.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. Yang
    • 1
  • P. Huerre
    • 1
  • P. Coullet
    • 2
  1. 1.Department of Aerospace EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Laboratoire de Physique Théorique Parc ValroseUniversité de NiceNiceFrance

Personalised recommendations