Defect-Mediated Turbulence in Spatio-Temporal Patterns

Part of the NATO ASI Series book series (NSSB, volume 237)


A lot of interest has been devoted, these last few decades, to systems driven far from equilibrium by an external parameter (see for instance the book edited by Wesfreid and Zaleski, 1984). The study of such problems involving many degrees of freedom and displaying nonlinear behaviours is expected to give some clues in the understanding of complex spatiotemporal phenomena, such as hydrodynamic turbulence. Many model equations, displaying spatio-temporal complexity (Kuramoto and Tsuzuki, 1976; Pomeau and Manneville, 1979; Chaté and Manneville, 1987), have been studied. We show in this paper that, in the framework of amplitude equations (Newell and Whitehead, 1969; Segel, 1969) which describe nonlinear dynamics near a bifurcation point, a new form of turbulence may occur (Coullet et al., 1989), which is associated with topological defects. First, we consider the simplest model which leads to such behaviours, namely the amplitude equation associated with a Hopf bifurcation. Then, same considerations are applied to amplitude equations corresponding to a Hopf bifurcation where space translational invariance is also broken, and which describe the occurence of wave patterns in an anisotropic medium.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benjamin T. B., and Feir J. E., 1967, J. Fluid Mech. 27, 417.CrossRefGoogle Scholar
  2. Bretherton C. S., and Spiegel E. A., 1983, Physics Lett. 96A, 152.CrossRefGoogle Scholar
  3. Browand F. K., and Troutt T. R., 1985, J. Fluid Mech. 158, 489.CrossRefGoogle Scholar
  4. Chaté II., and Manneville P., 1987, Phys. Rev. Lett. 58.Google Scholar
  5. Coullet P., Fauve S., and Tirapegui E., 1985, J. Physique Lettres, 46, 787.Google Scholar
  6. Coullet P., Elphick C., Gil L., and Lega J., 1987, Phys. Rev. Lett. 59, 884.CrossRefGoogle Scholar
  7. Coullet P., Gil L., and Lega J., 1989, Defect-mediated turbulence,Phys. Rev. Lett. 62, 1619.Coullet P., Gil L., and Lega J., 1988, A form of turbulence associated with topological defects,to appear in Physica D.CrossRefGoogle Scholar
  8. Coullet P., and Lega J., 1988, Defect-mediated turbulence in wave patterns,Europhysics Lett. 7, 511CrossRefGoogle Scholar
  9. Dreyfus J. M., and Guyon E., 1981, J. de Phys. 42, 283.Google Scholar
  10. Hyman J. M., Nicolaenko B., and Zaleski S., 1986, Physica 23D, 265.MathSciNetGoogle Scholar
  11. Kuramoto Y., and Tsuzuki T., 1976, Prog. Theor. Phys. 55, 356.CrossRefGoogle Scholar
  12. Kuramoto Y., 1978, Suppl. of Prog. Th. Phys. 64, 346.Google Scholar
  13. Lega J., 1989, Defect-mediated turbulence: an example in wave patterns, Le Journal de Physique, Colloque C3, 50, C3-193.Google Scholar
  14. Newell A. C., and Whitehead J. A., 1969, J. Fluid Mech. 38, 279.MathSciNetCrossRefGoogle Scholar
  15. Newell A. C., 1974, in Lectures in Applied Mathematics, Vol. 15, Am. Math. Society, Providence.Google Scholar
  16. Pomeau Y., and Manneville P., 1979, J. Phys. Lettres 40, 609.CrossRefGoogle Scholar
  17. Rehberg I., and Steinberg V., 1988, Defect-mediated turbulence in travelling convection patterns of a nematic liquid crystal, preprint submitted to Phys. Rev. Lett.Google Scholar
  18. Ribotta R., 1988, in Non linear phenomena in material science, Eds. L. Kubin and G. Martin, Trans Tech PublicationsGoogle Scholar
  19. Segel L. A., 1969, J. Fluid Mech. 38, 203.CrossRefGoogle Scholar
  20. Shivasinsky G.I., 1977, Acta Astronautica, 4, 1177.MathSciNetCrossRefGoogle Scholar
  21. Walgraef D., Dewel G., and Borckmans P., 1982, Z. Phys. B 48, 167.CrossRefGoogle Scholar
  22. Wesfreid J. E., and Zaleski S., 1984, Cellular Structures in Instabilities,Springer Verlag. Yang X. D., Joets A., and Ribotta R., 1988, in Propagation in Systems far from Equilibrium,Google Scholar
  23. Eds. J. E. Wesfreid, H. R. Brand, P. Manneville, G. Albinet, and N. Boccara, Springer-Verlag.Google Scholar
  24. Yang X. D., Joets A., and Ribotta R., 1988, Localized instabilities and nucleation of dislocations in convective rolls, preprint submitted to Phys. Rev. Lett.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. Lega
    • 1
  1. 1.Laboratoire de Physique ThéoriqueUniversité de NiceNice CedexFrance

Personalised recommendations